Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 794–799 | Cite as

Substantiation of the Selection of Trifluoroacetophenone Derivatives for the Manufacture of Membranes of Sulfate- and Carbonate-Selective Electrodes

  • Yu. V. MatveichukEmail author
ARTICLES
  • 5 Downloads

Abstract

The distribution of trifluoroacetophenone (TFAP) and its derivatives—p-methyl trifluoroacetophenone (p-MTFAP), 2,4-dimethyl trifluoroacetophenone (DMTFAP), 2,4,6-trimethyl trifluoroacetophenone (TMTFAP), and heptyl p-trifluoroacetylbenzoate (H-p-TFAB)—in a hexane–water system, which simplifies a polyvinylchloride membrane of selective electrodes, is studied by UV spectrophotometry and chromatography. These substances are used as neutral carriers (NCs) in membranes of ion-selective electrodes reversible to doubly charged carbonate and sulfate ions. The hydration of TFAP and some of its derivatives is systematically investigated. It is found that TFAP has higher solubility in water (partition coefficient D = 415) compared to those of p-MTFAP, DMTFAP, TMTFAP, and H-p-TFAB (D = 1360–2700), which makes it unsuitable as a neutral carrier for manufacturing membrane electrodes. H-p-TFAB is most strongly hydrated in an alkaline medium. It is found that p-MTFAP and H-p-TFAB form crystalline hydrates. The selectivity coefficients for the carbonate- and sulfate-selective electrodes are determined for all the neutral carriers studied; the selectivity of the electrodes increases in the series TFAP < p-MTFAP < DMTFAP < TMTFAP < p-BTFAP (p-butyl trifluoroacetophenone) < H-p-TFAB.

Keywords:

trifluoroacetophenone derivatives hydration carbonate- and sulfate-selective electrodes partition coefficient hexane–water system 

Notes

REFERENCES

  1. 1.
    Matveichuk, Yu., Akayeu, Ya., and Rakhman’ko, E., Chem. Pap., 2018, vol. 72, no. 2, p. 509.CrossRefGoogle Scholar
  2. 2.
    Matveichuk, Yu.V. and Rakhman’ko, E.M., Anal. Chem. Lett., 2017, vol. 7, no. 5, p. 647.CrossRefGoogle Scholar
  3. 3.
    Matveichuk, Yu., Rakhman’ko, E., Akayeu, Ya., and Stanishevskii, D., Chem. Pap., 2018, vol. 72, no. 3, p. 731.CrossRefGoogle Scholar
  4. 4.
    Antonisse, M.M.G. and Reinhoudt, D.N., Electroanalysis, 1999, vol. 11, p. 1035.CrossRefGoogle Scholar
  5. 5.
    Makarychev-Mikhailov, S., Legin, A., Mortensen, J., Levitchev, S., and Vlasov, Yu., Analyst, 2004, vol. 129, no. 3, p. 213.CrossRefGoogle Scholar
  6. 6.
    Shim, J.H., Jeong, I.S., Lee, M.H., Hong, H.P., On, J.H., Kim, K.S., Kim, H.S., Kim, B.H., Cha, G.S., and Nam, H., Talanta, 2004, vol. 63, no. 1, p. 61.CrossRefGoogle Scholar
  7. 7.
    Meyerhoff, M.E., Pretsch, E., Welti, D.H., and Simon, W., Anal. Chem., 1987, vol. 59, no. 1, p. 144.CrossRefGoogle Scholar
  8. 8.
    Shin, J.H., Lee, J.S., Lee, Y.J., and Cha, G.S., J. Electroanal. Chem., 1999, vol. 468, no. 1, p. 76.CrossRefGoogle Scholar
  9. 9.
    Lomako, S.V., Astapovich, R.I., Nozdrin-Plotnitskaya, O.V., Pavlova, T.E., Lei, S., Nazarov, V.A., Okaev, E.B., Rakhman’ko, E.M., and Egorov, V.V., Anal. Chim. Acta, 2006, vol. 562, no. 2, p. 216.CrossRefGoogle Scholar
  10. 10.
    Bart, T.Ya., Karavan, V.S., Grekovich, A.L., Ampilogova, N.A., Yurinskaya, V.E., and Nikiforov, V.A., Zh. Anal. Khim., 1990, vol. 45, no. 7, p. 1364.Google Scholar
  11. 11.
    Nikol’skii, B.P. and Materova, E.A., Ionoselektivnye elektrody (Ion-Selective Electrodes), Leningrad: Khimiya, 1980.Google Scholar
  12. 12.
    Smirnova, A.L., Grekovich, A.L., and Materova, E.A., Elektrokhimiya, 1988, vol. 24, no. 9, p. 1187.Google Scholar
  13. 13.
    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.Google Scholar
  14. 14.
    Cammann, K., Das Arbeiten mit Ionenselektiven Elektroden (Working with Ion-Selective Electrodes), Heidelberg: Springer, 1977.Google Scholar
  15. 15.
    Wang, K., Seiler, K., Haug, J.-P., Lehmann, B., West, S., Hartman, K., and Simon, W., Anal. Chem., 1991, vol. 63, no. 10, p. 970.CrossRefGoogle Scholar
  16. 16.
    Stuart, B.H., Infrared Spectroscopy: Fundamentals and Applications, Chichester: Wiley, 2004.CrossRefGoogle Scholar
  17. 17.
    Gulevich, A.L., Rakhman’ko, E.M., Kiiko, T.N., and Senin, P.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2002, vol. 45, no. 1, p. 48.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Belarusian State UniversityMinskBelarus

Personalised recommendations