Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 738–743 | Cite as

Use of Silica with Immobilized 2-Nitrozo-1-Naphthol-4-Sulfonic Acid for the Sorption–Photometric Determination of Palladium

  • S. L. Didukh-ShadrinaEmail author
  • V. N. Losev
  • N. V. Maznyak
  • A. K. Trofimchuk
ARTICLES
  • 4 Downloads

Abstract

Silica modified with 2-nitroso-1-naphthol-4-sulfonic acid (NNS), quantitatively extracting palladium(II) from solutions in the pH range 1–8, is proposed for the preconcentration and photometric determination of palladium(II) in the adsorbent phase. In the sorption of palladium(II) from solutions with pH 1–3, complex compounds of the stoichiometry Pd : NNS = 1 : 2 were formed on the adsorbent surface. They has intense lilac color and a maximum in diffuse reflectance spectrum at 550 nm. A procedure is developed for sorption–photometric determination of palladium in the version of diffuse reflectance spectroscopy with a limit of detection 0.03 µg per 0.1 g of the sorbent. The analytical range is 0.1–10 µg/0.1 g. The procedure was tested in the determination of palladium in wastewater and water extract from the soil.

Keywords:

palladium(II) nitroso-N-salt modified silica sorption–photometric determination 

Notes

FUNDING

The work supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 4.6343.2017 for the Siberian Federal University.

REFERENCES

  1. 1.
    Nordberg, G.F., Flower, B., Nordberg, M., and Friberg, L., Handbook on the Toxicology of Metals, New York: Academic, 2007, 3rd ed.Google Scholar
  2. 2.
    Moldovan, M., Anal. Bioanal. Chem., 2007, vol. 388, p. 537.CrossRefGoogle Scholar
  3. 3.
    Gagnon, Z., Newkirk, C., and Hicks, S., J. Environ. Sci. Health, 2006, vol. 41, no. 3, p. 397.CrossRefGoogle Scholar
  4. 4.
    Rao, C. and Reddi, G., TrAC, Trends. Anal. Chem., 2000, vol. 19, no. 9, p. 565.CrossRefGoogle Scholar
  5. 5.
    Machado, R.C., Amaral, C., Schiavo, D., Nóbrega, J.A., and Nogueira, A.R., Microchem. J., 2017, vol. 130, p. 271.CrossRefGoogle Scholar
  6. 6.
    Mohammadi, S.Z., Afzali, D., Taher, M.A., and Baghelani, Y., Microchim. Acta, 2010, vol. 168, no. 1, p. 123.CrossRefGoogle Scholar
  7. 7.
    Ruhela, R., Sharma, J.N., Tomar, B.S., Hubli, R.C., and Suri, A.K., Talanta, 2011, vol. 85, p. 1217.CrossRefGoogle Scholar
  8. 8.
    Amin, A.S., Arabian J. Chem., 2016, vol. 9, p. 326.CrossRefGoogle Scholar
  9. 9.
    Mohammadi, S., Afzali, D., and Pourtalebi, D., J. Anal. Chem., 2011, vol. 66, no. 7, p. 620.CrossRefGoogle Scholar
  10. 10.
    Shuo Lin, Wei Wei, Xiaohui Wu, Tao Zhou, Juan Mao, and Yeoung-Sang Yun, J. Hazard. Mater., 2015, vol. 299, p. 10.CrossRefGoogle Scholar
  11. 11.
    Awual, Md.R., Khaleque, Md.A., Ratna, Y., and Znad, H., J. Ind. Eng. Chem., 2015, vol. 21, p. 405.CrossRefGoogle Scholar
  12. 12.
    Shaheen, H.A., Marwani, H.M., and Soliman, E.M., J. Mol. Liq., 2017, vol. 232, p. 139.CrossRefGoogle Scholar
  13. 13.
    Mladenova, E., Dakova, I., Karadjova, I., and Karadjov, M., Microchem. J., 2012, vol. 101, p. 59.CrossRefGoogle Scholar
  14. 14.
    Woińska, S. and Godlewska-Żyłkiewicz, B., Spectrochim. Acta, Part B, 2011, vol. 66, p. 522.CrossRefGoogle Scholar
  15. 15.
    Bilba, D., Paduraru, C., and Tofan, L., Microchim. Acta, 2004, vol. 144, no. 1, p. 97.CrossRefGoogle Scholar
  16. 16.
    Zolotov, Yu.A., Tsyzin, G.I., Dmitrienko, S.G., and Morosanova, E.I., Sorbtsionnoe kontsentrirovanie mikrokomponentov iz rastvorov (Adsorption Preconcentration of Trace Components from Solutions), Moscow: Nauka, 2007.Google Scholar
  17. 17.
    Marczenko, Z. and Balcerzak, M., Spektrofotometryczne metody w analizie nieorganicznej (Spectrophotometric Method in Inorganic Analysis), Warsaw: Wydawnictwo Naukowe PWN, 1998.Google Scholar
  18. 18.
    Sirén, H. and Riekkola, M.-L., Microchim. Acta, 1986, vol. 90, nos. 3–4, p. 159.CrossRefGoogle Scholar
  19. 19.
    Ivanov, V.M., Samarina, T.O., and Figurovskaya, V.N., Moscow Univ. Chem. Bull. (Engl. Transl.), 2010, vol. 65, no. 4, p. 249.Google Scholar
  20. 20.
    Cheng, K.L., Anal. Chem., 1954, vol. 26, p. 1894.CrossRefGoogle Scholar
  21. 21.
    Didukh, S.L., Losev, V.N., Mukhina, A.N., Maksimov, N.G., and Trofimchuk, A.K., J. Anal. Chem., 2017, vol. 72, no. 1, p. 49.CrossRefGoogle Scholar
  22. 22.
    Buslaeva, T.M. and Simanova, S.A., Russ. J. Coord. Chem., 1999, vol. 25, no. 3, p. 151.Google Scholar
  23. 23.
    Taher, M.A. and Puri, B.K., Analyst, 1995, vol. 120, no. 5, p. 95.CrossRefGoogle Scholar
  24. 24.
    Taher, M.A., Dehzoei, A.M., Puri, B.K., and Puri, S., Anal. Chim. Acta, 1998, vol. 367, nos. 1–3, p. 55.CrossRefGoogle Scholar
  25. 25.
    Motomizu, Sh., Kuwabara, M., and Oshima, M., Bunseki Kagaku, 1994, vol. 43, no. 8, p. 621.CrossRefGoogle Scholar
  26. 26.
    RD (Engineering Documentation) 52.18.286-91: Methods for Measuring the Mass Fraction of Water-Soluble Forms of Metals (Copper, Lead, Zinc, Nickel, Cadmium, Cobalt, Chromium, Manganese) in Soil Samples by Atomic Absorption, Moscow, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. L. Didukh-Shadrina
    • 1
    Email author
  • V. N. Losev
    • 1
  • N. V. Maznyak
    • 1
  • A. K. Trofimchuk
    • 2
  1. 1.“Kristall” Research and Engineering Center, Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Faculty of Chemistry, Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations