Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 764–770 | Cite as

A Simple and Rapid Gas Chromatographic Method for Routine Caffeine Determination in Beverages using Nitrogen Phosphorus Detector

  • Chi-Hang Chow
  • Yuet-Chi Kan
  • Koon-Sing HoEmail author


Caffeine is a common ingredient in beverages important to be monitored, as there are regulations worldwide. In this study, an analytical method was developed for routine caffeine determination in beverages. The sample pretreatment only takes a few minutes. Caffeine in the sample is extracted by 1 mL of ethyl acetate under sonication. The ethyl acetate phase is then dried by 0.08 g of anhydrous sodium sulfate and directly injected to gas chromatography–nitrogen phosphorus detector. The method was optimized to achieve high rate of recovery of 90.9–111.7% with RSD of <5% for fourteen real beverage samples. The method detection limit was 3.5 mg/L. Apart from the advantages of simplicity and rapidity, the method is relatively green, accurate, precise, sensitive, has a high throughput, low cost of operation and maintenance and can be recommended for the quantification of caffeine in various common beverages.


caffeine beverage gas chromatography–nitrogen phosphorus detector ultrasonic assisted extraction 



This work was supported by a funding from the Master of Science programme in Analytical Chemistry at the Department of Chemistry of Hong Kong Baptist University.


The authors declare no conflict of interest.


  1. 1.
    Gerald, I., Arthur, D.E., and Adedayo, A., Am. J. Eng. Res., 2014, vol. 3, p. 124.Google Scholar
  2. 2.
    Sereshti, H. and Samadi, S., Food Chem., 2014, vol. 158, p. 8.CrossRefGoogle Scholar
  3. 3.
    Gonzalez de Mejia, E. and Ramirez-Mares, M.V., Trends. Endocrinol. Metab., 2014, vol. 25, p. 489.CrossRefGoogle Scholar
  4. 4.
    Reissig, C.J., Strain, E.C., and Griffiths, R.R., Drug Alcohol Depend., 2009, vol. 99, p. 1.CrossRefGoogle Scholar
  5. 5.
    Kapner, A.D., Ephedra and Energy Drinks on College Campuses, The Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention, 2008.Google Scholar
  6. 6.
    Gliszczyńska-Świgło, A. and Rybicka, I., Food Anal. Methods, 2015, vol. 8, p. 139.CrossRefGoogle Scholar
  7. 7.
    Rostagno, M.A., Manchón, N., D’Arrigo, M., Guillamón, E., Villares, A., García-Lafuente, A., Ramos, A., and Martínez, J.A., Anal. Chim. Acta, 2011, vol. 685, p. 204.CrossRefGoogle Scholar
  8. 8.
    Wang, D., Lu, J., Miao, A., Xie, Z., and Yang, D., J. Food Compos. Anal., 2008, vol. 21, p. 361.CrossRefGoogle Scholar
  9. 9.
    Tzanavaras, P.D. and Themelis, D.G., Anal. Chim. Acta, 2007, vol. 581, p. 89.CrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Chen, P., Lin, L., Harnly, J.M., Yu, L., and Li, Z., Food Chem., 2011, vol. 126, p. 1269.CrossRefGoogle Scholar
  11. 11.
    Novakova, L., Spacil, Z., Seifrtova, M., Opletal, L., and Solich, P., Talanta, 2010, vol. 80, p. 1970.CrossRefGoogle Scholar
  12. 12.
    Rahim, A.A., Saad, B., Osman, H., Hashim, N.H., Yahya, S., and Talib, K.M., Food Chem., 2011, vol. 126, p. 1412.CrossRefGoogle Scholar
  13. 13.
    Ayala, J., Simons, K., and Kerrigan, S., J. Anal. Toxicol., 2009, vol. 33, p. 27.CrossRefGoogle Scholar
  14. 14.
    Shrivas, K. and Wu, H.F., J. Chromatogr. A, 2007, vol. 1170, p. 9.CrossRefGoogle Scholar
  15. 15.
    Zou, J. and Li, N., J. Chromatogr. A, 2006, vol. 1136, p. 106.CrossRefGoogle Scholar
  16. 16.
    Chen, Q., Mou, S., Hou, X., and Ni, Z., Anal. Chim. Acta, 1998, vol. 371, p. 287.CrossRefGoogle Scholar
  17. 17.
    Dillenburg Meinhart, A., Schaper Bizzotto, C., Ballus, C.A., Prado, M.A., Bruns, R.E., Teixeira Filho, J., and Teixeira Godoy, H., Food Chem., 2010, vol. 120, p. 1155.CrossRefGoogle Scholar
  18. 18.
    Wang, L., Zhao, P., Zhang, F., Bai, A., and Pan, C., J. AOAC Int., 2013, vol. 96, p. 353.Google Scholar
  19. 19.
    Atomssa, T. and Gholap, A.V., Afr. J. Pure Appl. Chem., 2011, vol. 5, p. 1.Google Scholar
  20. 20.
    Pan, X., Niu, G., and Liu, H., Chem. Eng. Process., 2003, vol. 42, p. 129.CrossRefGoogle Scholar
  21. 21.
    Svorc, L., Int. J. Electrochem. Sci., 2013, vol. 8, p. 5755.Google Scholar
  22. 22.
    Bermejo, D.V., Luna, P., Manic, M.S., Najdanovic-Visak, V., Reglero, G., and Fornari, T., Food Bioprod. Process., 2013, vol. 91, p. 303.CrossRefGoogle Scholar
  23. 23.
    Farajzadeh, M.A., Mogaddam, M.R.A., and Ghorbanpour, H., J. Chromatogr. A, 2014, vol. 1347, p. 8.CrossRefGoogle Scholar
  24. 24.
    Salemi, A., Rasoolzadeh, R., Nejad, M.M., and Vosough, M., Anal. Chim. Acta, 2013, vol. 769, p. 121.CrossRefGoogle Scholar
  25. 25.
    Fenoll, J., Hellín, P., Martínez, C.M., Miguel, M., and Flores, P., Food Chem., 2007, vol. 105, p. 711.CrossRefGoogle Scholar
  26. 26.
    Poole, C.F., The Essence of Chromatography, Amsterdam: Elsevier, 2003.Google Scholar
  27. 27.
    Mitchell, D.C., Knight, C.A., Hockenberry, J., Teplansky, R., and Hartman, T.J., Food Chem. Toxicol., 2014, vol. 63, p. 136.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Hong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations