Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 809–815 | Cite as

Determination of Fluvoxamine in Real Samples using Carbon Paste Electrode Modified by Electrodeposition of Nickel

  • Ali Ahmadi Diva
  • Shahla FathiEmail author
  • Fereshte Chekin
ARTICLES
  • 9 Downloads

Abstract

In this study, we reported an effective electrochemical sensor for determination of antidepressant drug fluvoxamine using carbon paste electrode modified by nickel nanoparticles deposited on the surface of electrode by electrodeposition from micellar solution. The effective parameters at response of electrode to the drug, such as surfactant concentration, applied potential and duration of potential applying for deposition of nickel on the surface of carbon paste electrode were optimized. The modified electrode was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy methods. Electrocatalytic oxidation of fluvoxamine at the surface of modified electrode was studied using cyclic voltammetry, chronoamperometry and chronocoulometry methods. The peak currents and concentrations of fluvoxamine show a good linear response in the range form 1.2 × 10–6–2 × 10–4 M (R2 = 0.9988). The method was successfully applied for determination of fluvoxamine in pharmaceutical sample and human blood plasma.

Keywords:

electrocatalytic oxidation nickel electrodeposition method sodium dodecyl sulfate fluvoxamine 

Notes

ACKNOWLEDGMENT

Because the work was completly done in university and company only prepared us free drug samples therefore it is not funding. We would like to thank the Islamic Azad University, Ayatollah Amoli Branch and Sobhan pharmaceutical company for supporting the research project.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

  1. 1.
    Benfield, P., Drugs, 1986, vol. 32, p. 313.CrossRefGoogle Scholar
  2. 2.
    Tatar Ulu, S., Chromatographia, 2006, vol. 64, nos. 3–4, p. 169.CrossRefGoogle Scholar
  3. 3.
    Pullen, R.H. and Fatmi, A.A., J. Chromatogr. A, 1992, vol. 574, p. 101.CrossRefGoogle Scholar
  4. 4.
    Ohkubo, T., Shimoyama, R., Otani, K., Yoshida, K., Higuchi, H., and Shimizu, T., Anal. Sci., 2003, vol. 19, p. 859.CrossRefGoogle Scholar
  5. 5.
    Tatar Ulu, S., J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1444.CrossRefGoogle Scholar
  6. 6.
    Foda, N.H., J. Liq. Chromatogr. Relat. Technol., 1995, vol. 18, p. 1591.CrossRefGoogle Scholar
  7. 7.
    Schweitzer, C., Spahn, H., and Mutschler, E., J. Chromatogr. A, 1986, vol. 382, p. 405.CrossRefGoogle Scholar
  8. 8.
    Annapurna, V., Jyothi, G., Rohini Kumari, T., and Sailaja, B.B.V., E-J. Chem., 2010, vol. 7, p. 624.CrossRefGoogle Scholar
  9. 9.
    Starczewska, B., J. Trace Microprobe Tech., 2001, vol. 19, p. 19.CrossRefGoogle Scholar
  10. 10.
    Sanghavi, B.J., Wolfbeis, O.S., Hirsch, T., and Swami, N.S., Microchim. Acta, 2015, vol. 182, p. 1.CrossRefGoogle Scholar
  11. 11.
    Karuppiah, C., Cheemalapati, S., Chen, S.M., and Palanisamy, S., Ionics, 2015, vol. 21, p. 231.CrossRefGoogle Scholar
  12. 12.
    Cheemalapati, S. and Palanisamy, S., J. Appl. Electrochem., 2014, vol. 44, p. 317.CrossRefGoogle Scholar
  13. 13.
    Medyantseva, E.P., Varlamova, R.M., Gimaletdinova, D.A., Fattakhova, A.N., and Budnikov, G.K., J. Anal. Chem., 2008, vol. 63, p. 275.CrossRefGoogle Scholar
  14. 14.
    Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Maksimov, A.A., Fattakhova, A.N., Konovalova, O.A., and Budnikov, G.K., Russ. J. Appl. Chem., 2015, vol. 88 p, p. 40.Google Scholar
  15. 15.
    Nevado, J.J.B., Rodriguez Flores, J., and Castañeda Peñalvo, G., Electroanalysis, 2000, vol. 12, p. 1059.CrossRefGoogle Scholar
  16. 16.
    Nouws, H.A., Delerue-Matos, C., Barros, C., Rodrigues, C., and Santos-Silva, C., Anal. Bioanal. Chem., 2005, vol. 382, p. 1662.CrossRefGoogle Scholar
  17. 17.
    Madrakian, T., Soleimani, T., and Afkhami, A., Sens. Actuators, B, 2015, vol. 210, p. 259.CrossRefGoogle Scholar
  18. 18.
    Sasikala, G., Dhanasekaran, R., and Subramanian, C., Thin Solid Films, 1997, vol. 302, p. 71.CrossRefGoogle Scholar
  19. 19.
    Bauer, A., Gyenge, E.L., and Oloman, C.W., Electrochim. Acta, 2006, vol. 51, p. 5356.CrossRefGoogle Scholar
  20. 20.
    El-Deab, M.S., Electrochim. Acta, 2009, vol. 54, p. 3720.CrossRefGoogle Scholar
  21. 21.
    Gu, C., Lian, J., Jiang, Z., and Jiang, Q., Scr. Mater., 2006, vol. 54, p. 579.CrossRefGoogle Scholar
  22. 22.
    Sheridan, E., Hjem, J., and Forster, R.J., J. Electroanal. Chem., 2007, vol. 608, p. 1.CrossRefGoogle Scholar
  23. 23.
    Inamdar, A.I., Mujawar, S.H., Ganesan, V., and Patil, P.S., Nanotechnology, 2008, vol. 19, p. 32.CrossRefGoogle Scholar
  24. 24.
    Siddig, M.A., Radiman, S., Jan, L.S., and Muniandy, S.V., Colloids Surf., A, 2006, vol. 276, p. 15.CrossRefGoogle Scholar
  25. 25.
    Pham, T.M., Maitz, M.F., Richter, E., Reuther, H., Prokert, F., and Mucklich, A., J. Electroanal. Chem., 2004, vol. 572, p. 185.CrossRefGoogle Scholar
  26. 26.
    Mirceski, V. and Gulaboski, R., Electroanalysis, 2001, vol. 13, p. 1326.CrossRefGoogle Scholar
  27. 27.
    Mirceski, V. and Gulaboski, R., J. Solid State Electrochem., 2003, vol. 7, p. 157.CrossRefGoogle Scholar
  28. 28.
    Muhammad Khan , A., and Sakhavat Shah, S., J. Chem. Soc. Pakistan, 2008, vol. 30, p. 186.Google Scholar
  29. 29.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.Google Scholar
  30. 30.
    Kishore, M., Surendrababu, K., Hanumantharao, Y., Naga Hima Bindu, G., and Janardhan, M., Int. J. Appl. Biol. Pharm. Technol., 2010, vol. 1, p. 561.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Chemistry Department, Islamic Azad University, Ayatollah Amoli BranchAmolIran

Personalised recommendations