Advertisement

Journal of Analytical Chemistry

, Volume 74, Supplement 1, pp 47–51 | Cite as

Simulation of the Adsorption of Polychlorinated Aromatic Hydrocarbons on Graphitized Thermal Carbon Black for Predicting Chromatographic Retention Values

  • D. D. MatyushinEmail author
  • A. K. Buryak
ARTICLES
  • 9 Downloads

Abstract

The adsorption of polychlorinated aromatic hydrocarbons on graphitized thermal carbon black was simulated by a molecular-statistical method. The results of calculations were compared with data on chromatographic retention under gas chromatography conditions. A version that took into account the conformational flexibility of molecules was used for polychlorinated biphenyls. Different computational chemistry methods (classical molecular dynamics and semiempirical quantum methods) for evaluating the internal energy of a molecule were considered. It was found that the use of a molecular-statistical method and the AM1 semiempirical method for estimating the internal energy of molecules makes it possible to correctly predict the order of elution of isomeric dichlorobiphenyls. It was demonstrated that this approach can be used to confirm the assignment of peaks in a chromatogram to particular isomers.

Keywords:

gas chromatography adsorption polychlorinated biphenyls mathematical simulation 

Notes

FUNDING

This work was supported by the Presidium of the Russian Academy of Sciences (fundamental research program no. 14-P “Fundamentals and New Efficient Methods of Chemical Analysis and Structural Characterization of Substances” for 2018–2020).

REFERENCES

  1. 1.
    Put, R. and Vander Heyden, Y., Anal. Chim. Acta, 2007, vol. 602, no. 2, p. 164.CrossRefPubMedGoogle Scholar
  2. 2.
    Hancock, T., Put, R., Coomans, D., Vander Heyden, Y., and Everingham, Y., Chemom. Intell. Lab. Syst., 2005, vol. 76, no. 2, p. 185.CrossRefGoogle Scholar
  3. 3.
    Zellner, B.D.A., Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G., and Mondello, L., Flavour Fragrance J., 2008, vol. 23, no. 5, p. 297.CrossRefGoogle Scholar
  4. 4.
    Buryak, A.K., Russ. Chem. Rev., 2002, vol. 71, no. 8, p. 695.CrossRefGoogle Scholar
  5. 5.
    Kiselev, A.V., Poshkus, D.P., and Grumadas, A.J., J. Chem. Soc., Faraday Trans., 1979, no. 75, p. 1281.Google Scholar
  6. 6.
    Matyushin, D.D. and Buryak, A.K., Sorbtsionnye Khromatogr. Protsessy, 2017, vol. 17, no. 2, p. 204.Google Scholar
  7. 7.
    Milyushkin, A.L., Laktyushina, A.A., and Buryak, A.K., Russ. Chem. Bull., 2017, vol. 66, no. 1, p. 56.CrossRefGoogle Scholar
  8. 8.
    Fuoco, R., Colombini, M.P., and Samcova, E., Chromatographia, 1993, vol. 36, no. 1, p. 65.CrossRefGoogle Scholar
  9. 9.
    Pietrogrande, M.C., Benvenuti, A., Previato, S., and Dondi, F., Chromatographia, 2000, vol. 52, nos. 78, p. 425.CrossRefGoogle Scholar
  10. 10.
    Zagorevskaya, E.V., Ishchenko, N.V., Kiselev, A.V., and Kovaleva, N.V., Adsorpt. Sci. Technol., 1985, vol. 2, no. 4, p. 219.CrossRefGoogle Scholar
  11. 11.
    Glausch, A., Hirsch, A., Lamparth, I., and Schurig, V., J. Chromatogr. A, 1998, vol. 809, nos. 1–2, p. 252.CrossRefGoogle Scholar
  12. 12.
    Belyakova, L.D., Buryak, A.K., and Larionov, O.G., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, p. 605.CrossRefGoogle Scholar
  13. 13.
    Vidal-Madjar, C., Guiochon, G., and Dondi, F., J. Chromatogr. A, 1984, vol. 291, p. 1.CrossRefGoogle Scholar
  14. 14.
    Buryak, A.K., Fedotov, A.N., and Kiselev, A.V., Vestn. Mosk. Univ., Ser. 2: Khim., 1985, vol. 26, no. 6, p. 568.Google Scholar
  15. 15.
    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A., J. Comput. Chem., 2004, vol. 25, p. 1157.CrossRefPubMedGoogle Scholar
  16. 16.
    Halgren, T.A., J. Comput. Chem., 1996, vol. 17, nos. 5–6, p. 490.CrossRefGoogle Scholar
  17. 17.
    Dewar, M.J., Zoebisch, E.G., Healy, E.F., and Stewart, J.J., J. Am. Chem. Soc., 1985, vol. 107, no. 13, p. 3902.CrossRefGoogle Scholar
  18. 18.
    O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R., J. Cheminf., 2011, vol. 3, no. 1, p. 33.CrossRefGoogle Scholar
  19. 19.
    Stewart, J.J.P., J. Comput.-Aided Mol. Des., 1990, vol. 4, no. 1, p. 1.CrossRefPubMedGoogle Scholar
  20. 20.
    Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Hubertus, J.J., Dunyou, W., Nieplocha, J., Apra, E., Windus, T.L., and De Jong, W.A., Comput. Phys. Commun., 2010, vol. 181, no. 9, p. 1477.CrossRefGoogle Scholar
  21. 21.
    Mulholland, J.A., Sarofim, A.F., and Rutledge, G.C., J. Phys. Chem., 1993, vol. 97, no. 26, p. 6890.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations