Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 3, pp 286–295 | Cite as

Easy Activation of Pencil Graphite Electrode as Sensing Platform for Determination of Bisphenol A

  • Mohammad Ali KamyabiEmail author
  • Nasim Hajari
ARTICLES
  • 27 Downloads

Abstract

The presented study focuses on the optimum conditions for chemical activation of pencil graphite electrodes (PGE) used in the determination of bisphenol A (BPA). The prepared ethanol–HCl mixture for chemical activation of pencil graphite electrode exhibits better activation factor compared with traditional activation methods like anodizing. The obtained porous and highly conductive surface of PGE can be used as a sensing device. The electrochemical behavior of BPA at the modified sensor was investigated. The effects of pH, accumulation time and sensor activation were examined. In the optimum experimental conditions, adsorptive differential pulse voltammetry was used for determination of BPA, which exhibits a linear calibration graph of Ip versus BPA concentration in the range 1.25 × 10–8 to 1.34 × 10–4 M. The calculated detection limit for S/N = 3 was 1.0 nM. The presented sensor is reusable. The activated PGE was applied for the determination of BPA leached from baby bottles as a real sample using spike method.

Keywords:

bisphenol A pencil graphite electrode voltammetric sensor easy activation ethanolic acid mixture 

Notes

ACKNOWLEDGMENTS

The authors express their gratitude to the University of Zanjan Research Council for support of this work.

REFERENCES

  1. 1.
    Kovacic, P., Med. Hypotheses, 2010, vol. 75, p. 1.CrossRefGoogle Scholar
  2. 2.
    Wang, J. and Schnute, W.C., Rapid Commun. Mass Spectrom., 2010, vol. 24, p. 2605.CrossRefGoogle Scholar
  3. 3.
    Gómez, M., Agüera, A., Mezcua, M., Hurtado, J., Mocholí, F., and Fernández-Alba, A., Talanta, 2007, vol. 73, p. 314.CrossRefGoogle Scholar
  4. 4.
    Biedermann-Brem, S. and Grob, K., Eur. Food Res. Technol., 2009, vol. 228, p. 679.CrossRefGoogle Scholar
  5. 5.
    Tavares, P.H.C.P. and Barbeira, P.J.S., J. Appl. Electrochem., 2008, vol. 38, p. 827.CrossRefGoogle Scholar
  6. 6.
    Kamyabi, M.A., Hajari, N., Babaei, N., Moharramnezhad, M., and Yahiro, H., J. Taiwan Inst. Chem. Eng., 2017, vol. 81, p. 21.CrossRefGoogle Scholar
  7. 7.
    Ramírez-García, S., Alegret, S., Céspedes, F., and Forster, R.J., Anal. Chem., 2004, vol. 76, p. 503.CrossRefGoogle Scholar
  8. 8.
    McCreery, R.L., Chem. Rev., 2008, vol. 108, p. 2646.CrossRefGoogle Scholar
  9. 9.
    Yardim, Y., Keskin, E., Levent, A., Özsöz, M., and Şentürk, Z., Talanta, 2010, vol. 80, p. 1347.CrossRefGoogle Scholar
  10. 10.
    Kamyabi, M.A. and Hajari, N., J. Braz. Chem. Soc., 2017, vol. 28, p. 808.Google Scholar
  11. 11.
    Ensafi, A.A., Heydari-Bafrooei, E., and Amini, M., Biosens. Bioelectron., 2012, vol. 31, p. 376.CrossRefGoogle Scholar
  12. 12.
    Lord, S., Jr. and Rogers, L., Anal. Chem., 1954, vol. 26, p. 284.CrossRefGoogle Scholar
  13. 13.
    Ranganathan, S., Kuo, T.-C., and McCreery, R.L., Anal. Chem., 1999, vol. 71, p. 3574.CrossRefGoogle Scholar
  14. 14.
    Hejazi, M., Alipour, E., and Pournaghi-Azar, M., Talanta, 2007, vol. 71, p. 1734.CrossRefGoogle Scholar
  15. 15.
    Wang, J., Kawde, A.-N., and Sahlin, E., Analyst, 2000, vol. 125, p. 5.CrossRefGoogle Scholar
  16. 16.
    Eskiocak, U., Ozkan-Ariksoysal, D., Özsöz, M., and Öktem, H.A., Anal. Chem., 2007, vol. 79, p. 8807.CrossRefGoogle Scholar
  17. 17.
    Rice, M.E., Galus, Z., and Adams, R.N., J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 143, p. 89.CrossRefGoogle Scholar
  18. 18.
    Urbaniczky, C. and Lundström, K., J. Electroanal. Chem. Interfacial Electrochem., 1984, vol. 176, p. 169.CrossRefGoogle Scholar
  19. 19.
    Ndlovu, T., Arotiba, O.A., Sampath, S., Krause, R.W., and Mamba, B.B., Sensors, 2012, vol. 12, p. 11601.CrossRefGoogle Scholar
  20. 20.
    Ntsendwana, B., Mamba, B., Sampath, S., and Arotiba, O., Int. J. Electrochem. Sci., 2012, vol. 7, p. 3501.Google Scholar
  21. 21.
    Chan, Y.Y., Yue, Y., Li, Y., and Webster, R.D., Electrochim. Acta, 2013, vol. 112, p. 287.CrossRefGoogle Scholar
  22. 22.
    Wang, F., Yang, J., and Wu, K., Anal. Chim. Acta, 2009, vol. 638, p. 23.CrossRefGoogle Scholar
  23. 23.
    Özcan, A., Electroanalysis, 2014, vol. 26, p. 1631.CrossRefGoogle Scholar
  24. 24.
    Poorahong, S., Thammakhet, C., Thavarungkul, P., Limbut, W., Numnuam, A., and Kanatharana, P., Microchim. Acta, 2012, vol. 176, p. 91.CrossRefGoogle Scholar
  25. 25.
    Li, J., Kuang, D., Feng, Y., Zhang, F., and Liu, M., Microchim. Acta, 2011, vol. 172, p. 379.CrossRefGoogle Scholar
  26. 26.
    Huang, J., Zhang, X., Liu, S., Lin, Q., He, X., Xing, X., and Lian, W., J. Appl. Electrochem., 2011, vol. 41, p. 1323.CrossRefGoogle Scholar
  27. 27.
    Mazzotta, E., Malitesta, C., and Margapoti, E., Anal. Bioanal. Chem., 2013, vol. 405, p. 3587.CrossRefGoogle Scholar
  28. 28.
    Tu, X., Yan, L., Luo, X., Luo, S., and Xie, Q., Electroanalysis, 2009, vol. 21, p. 2491.Google Scholar
  29. 29.
    Wang, Y., Yang, Y., Xu, L., and Zhang, J., Electrochim. Acta, 2011, vol. 56, p. 2105.CrossRefGoogle Scholar
  30. 30.
    Rather, J.A. and De Wael, K., Sens. Actuators, B, 2013, vol. 176, p. 110.CrossRefGoogle Scholar
  31. 31.
    Jiang, X., Ding, W., Luan, C., Ma, Q., and Guo, Z., Microchim. Acta, 2013, vol. 180, p. 1021.CrossRefGoogle Scholar
  32. 32.
    Arabali, V., Ebrahimi, M., Gheibi, S., Khaleghi, F., Bijad, M., Rudbaraki, A., Abbasghorbani, M., and Ganjali, M., Food Anal. Methods, 2016, vol. 9, p. 1763.CrossRefGoogle Scholar
  33. 33.
    Chen, W.-Y., Mei, L.-P., Feng, J.-J., Yuan, T., Wang, A.-J., and Yu, H., Microchim. Acta, 2015, vol. 182, p. 703.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Colleges of Science, University of ZanjanZanjanIran

Personalised recommendations