Journal of Analytical Chemistry

, Volume 74, Issue 3, pp 262–269 | Cite as

Quantitative and Standardless Determination of the Concentration Composition of Mixtures by Multidimensional Spectroscopy: Theory and Computer Experiments

  • L. A. GribovEmail author
  • V. I. Baranov
  • I. V. Mikhailov


The most general problem of determining the concentration composition of mixtures of substances and products of chemical transformations by the data of multidimensional spectroscopy under the conditions of time-varying spectra and component concentrations is formulated. Only a combination of theoretical spectroscopy methods, measurement techniques, and mathematical methods offers, in principle, a solution of such problems, even for the case of a single measurement. A promising and the only way is the use of standardless methods of spectral analysis. Methods and algorithms for solving the problem are developed. A large set of model calculations corresponding to real molecular structures and their experimentally observed photochemical transformations demonstrated the efficiency of the proposed approach. The solution of the problem converges to the exact values, and the obtained values of the concentrations are tolerant to the possible errors in specifying the initial spectral data. The degree of confidence is determined by the calculated value of the variance, which can serve a criterion for the correctness of the initial hypothesis about the qualitative composition of a multicomponent mixture.


multidimensional spectroscopy spectral analysis determination of the concentration composition of mixtures standardless approach 



  1. 1.
    Porter, G., Proc. R. Soc. London, Ser. A, 1950, vol. 200, no. 1061, p. 284.CrossRefGoogle Scholar
  2. 2.
    Chibisov, A.K., Russ. Chem. Rev., 1970, vol. 39, no. 10, p. 891.CrossRefGoogle Scholar
  3. 3.
    Bensasson, V., Land, E.J., and Truscott, T.G., Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine, Oxford: Pergamon, 1983.Google Scholar
  4. 4.
    Lloyd, J.B.F., Nature (London), Phys. Sci., 1971, vol. 231, no. 20, p. 64.Google Scholar
  5. 5.
    Andrade-Eiroa, A., Armas, G., Estela, J.M., and Cerdà, V., TrAC, Trends Anal. Chem., 2010, vol. 29, no. 8, p. 885.CrossRefGoogle Scholar
  6. 6.
    Andrade-Eiroa, A., Armas, G., Estela, J.M., and Cerdà, V., TrAC, Trends Anal. Chem., 2010, vol. 29, no. 8, p. 902.CrossRefGoogle Scholar
  7. 7.
    Calvert, J.G. and Pitts, J.N., Photochemistry, New York: Wiley, 1966.Google Scholar
  8. 8.
    Chibisov, A.K., Russ. Chem. Rev., 1981, vol. 50, no. 7, p. 615.CrossRefGoogle Scholar
  9. 9.
    Turro, N.J., Ramamurthy, V., and Scaiano, J.C., Principles of Molecular Photochemistry: An Introduction, Mill Valley: Univ. Sci. Books, 2009.Google Scholar
  10. 10.
    Brereton, R.G., Chemometrics: Data Analysis for the Laboratory and Chemical Plant, Chichester: Wiley, 2003.CrossRefGoogle Scholar
  11. 11.
    Rodionova, O.Y. and Pomerantsev, A.L., Russ. Chem. Rev., 2006, vol. 75, no. 4, p. 271.CrossRefGoogle Scholar
  12. 12.
    Lavine, B. and Workman, J., Anal. Chem., 2008, vol. 80, no. 12, p. 4519.CrossRefGoogle Scholar
  13. 13.
    Kumar, N., Bansal, A., Sarma, G.S., and Rawal, R.K., Talanta, 2014, vol. 123, p. 186.CrossRefGoogle Scholar
  14. 14.
    Eriksson, L., Trygg, J., and Wold, S., J. Chemom., 2014, vol. 28, no. 5, p. 332.CrossRefGoogle Scholar
  15. 15.
    Szymańska, E., Gerretzen, J., Engel, J., Geurts, B., Blanchet, L., and Buydens, L.M.C., TrAC, Trends Anal. Chem., 2015, vol. 69, p. 34.CrossRefGoogle Scholar
  16. 16.
    Sánchez, F.C., Van den Bogaert, B., Rutan, S.C., and Massart, D.L., Chemom. Intell. Lab. Syst., 1996, vol. 34, no. 2, p. 139.CrossRefGoogle Scholar
  17. 17.
    Naes, T., Isakson, T., Fearn, T., and Davies, T., A User-friendly Guide to Multivariate Calibration and Classification, Christerer: Wiley, 2002.Google Scholar
  18. 18.
    Jiang, J.H., Liang, Y., and Ozaki, Y., Chemom. Intell. Lab. Syst., 2004, vol. 71, no. 1, p. 1.CrossRefGoogle Scholar
  19. 19.
    Flaten, G.R., Grung, B., and Kvalheim, O.M., Chemom. Intell. Lab. Syst., 2004, vol. 72, no. 1, p. 101.CrossRefGoogle Scholar
  20. 20.
    Monakhova, Yu.B., Mushtakova, S.P., Kolesni-kova, S.S., and Gribov, L.A., J. Anal. Chem., 2011, vol. 66, no. 1, p. 53.CrossRefGoogle Scholar
  21. 21.
    Monakhova, Yu.B., Astakhov, S.A., Mushtakova, S.P., and Gribov, L.A., J. Anal. Chem., 2011, vol. 66, no. 4, p. 351.CrossRefGoogle Scholar
  22. 22.
    Gribov, L.A., Zh. Anal. Khim., 1995, vol. 50, no. 6, p. 589.Google Scholar
  23. 23.
    Gribov, L.A., Elyashberg, M.E., and Karasev, Yu.Z., Anal. Chim. Acta, 1995, vol. 316, p. 217.CrossRefGoogle Scholar
  24. 24.
    Gribov, L.A., Baranov, V.I., and Elyashberg, M.E., Bezetalonnyi molekulyarnyi spektral’nyi analiz. Teoreticheskie osnovy (Standardless Molecular Spectral Analysis: Theoretical Basis), Moscow: URSS, 2002.Google Scholar
  25. 25.
    Elyashberg, M.E., Gribov, L.A., Karasev, Yu.Z., and Martirosian, E.R., Anal. Chim. Acta, 1997, vol. 353, p. 105.CrossRefGoogle Scholar
  26. 26.
    Gribov, L.A., Sidelov, D.I., and Maslov, I.V., J. Anal. Chem., 1998, vol. 53, no. 7, p. 621.Google Scholar
  27. 27.
    Baranov, V.I. and Gribov, L.A., J. Anal. Chem., 1999, vol. 54, no. 4, p. 307.Google Scholar
  28. 28.
    Baranov, V.I., Zavalii, M.V., and Gribov, L.A., J. Appl. Spectrosc., 2003, vol. 70, no. 5, p. 713.CrossRefGoogle Scholar
  29. 29.
    Baranov, V.I., Zavalii, M.V., and Gribov, L.A., J. Appl. Spectrosc., 2004, vol. 71, no. 3, p. 320.CrossRefGoogle Scholar
  30. 30.
    Gribov, L.A., Dement’ev, V.A., Zavalii, M.V., and Baranov, V.I., J. Struct. Chem., 2005, vol. 46, no. 2, p. 295.CrossRefGoogle Scholar
  31. 31.
    Gribov, L.A. and Baranov, V.I., J. Anal. Chem., 2009, vol. 64, no. 5, p. 445.CrossRefGoogle Scholar
  32. 32.
    Nemodruk, A.A. and Bezrogova, E.V., Fotokhimicheskie reaktsii v analiticheskoi khimii (Photochemical Reactions in Analytical Chemistry), Moscow: Khimiya, 1972.Google Scholar
  33. 33.
    Dodin, E.I., Fotokhimicheskii analiz (Photochemical Analysis), Moscow: Metallurgiya, 1979.Google Scholar
  34. 34.
    Tikhonov, A.N., Goncharskii, A.V., Stepanov, V.V., and Yagola, A.G., Regulyariziruyushchie algoritmy i apriornaya informatsiya (Regulatory Algorithms and A Priori Information), Moscow: Nauka, 1983.Google Scholar
  35. 35.
    Gribov, L.A., J. Appl. Spectrosc., 2014, vol. 81, no. 2, p. 288.CrossRefGoogle Scholar
  36. 36.
    Efron, B. and Tibshirani, R.J., An Introduction to the Bootstrap, Boca Raton, FL: CRC, 1993.CrossRefGoogle Scholar
  37. 37.
    Baranov, V.I., Gribov, L.A., Mikhailov, I.V., and Poteshnaya, N.I., High Energy Chem., 2015, vol. 49, no. 2, p. 96.CrossRefGoogle Scholar
  38. 38.
    Gribov, L.A. and Dement’ev, V.A., J. Anal. Chem., 2012, vol. 67, no. 5, p. 414.CrossRefGoogle Scholar
  39. 39.
    Gribov, L.A. and Dement’ev, V.A., J. Appl. Spectrosc., 2012, vol. 79, no. 2, p. 317.CrossRefGoogle Scholar
  40. 40.
    Gribov, L.A. and Dement’ev, V.A., J. Appl. Spectrosc., 2012, vol. 79, no. 5, p. 843.CrossRefGoogle Scholar
  41. 41.
    Gribov, L.A., Mikhailov, I.V., and Prokof’eva, N.I., J. Anal. Chem., 2015, vol. 70, no. 9, p. 1062.CrossRefGoogle Scholar
  42. 42.
    Baranov, V.I., Gribov, L.A., and Mikhailov, I.V., High Energy Chem., 2016, vol. 50, no. 5, p. 317.CrossRefGoogle Scholar
  43. 43.
    Gribov, L.A., Baranov, V.I., and Mikhailov, I.V., J. Appl. Spectrosc., 2016, vol. 83, no. 6, p. 1012.CrossRefGoogle Scholar
  44. 44.
    Astakhov, S.A., Baranov, V.I., and Gribov, L.A., J. Anal. Chem., 2001, vol. 56, no. 7, p. 625.CrossRefGoogle Scholar
  45. 45.
    Astakhov, S.A., Baranov, V.I., and Gribov, L.A., J. Mol. Struct., 2003, vol. 655, no. 1, p. 97.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. A. Gribov
    • 1
    Email author
  • V. I. Baranov
    • 1
  • I. V. Mikhailov
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations