Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1343–1346 | Cite as

Transmission for a Quadrupole Mass Filter with Dipolar Excitation

  • K. E. Seregin
  • N. V. KonenkovEmail author
  • A. S. Berdnikov
ARTICLES
  • 19 Downloads

Abstract

Mass peaks are calculated using the numerical simulation of ion trajectories in the linear quadrupole with the dipole excitation(s). Using this data, diagrams for transmission versus resolution are calculated both for the ideal quadrupole field and for the quadrupole field with round rods. It is shown that, using the dipole excitation mode, resolution may be increased from R0.1 = 1000 to R0.1 = 2200 with 20% QMF transmission in an ideal case, and, for the round rods, the dipole excitation along the isoline βy = 0.01 enables an increase in resolution R0.1 from 500 to 800 at a 20% level of transmission.

Keywords:

quadrupole mass filter dipolar resonance excitation iso-β lines instability bands resolution transmission 

Notes

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for Basic Research, projects no. 18-07-00429.

REFERENCES

  1. 1.
    Fischer, E., Z. Phys., 1959, vol. 156, no. 1, p. 1.CrossRefGoogle Scholar
  2. 2.
    Konenkov, N.V., Douglas, D.J., and Berdnikov, A.S., J. Am. Soc. Mass Spectrom., 2016, vol. 27, no. 7, p. 1236.CrossRefGoogle Scholar
  3. 3.
    Konenkov, N.V., Chernyak, E.Ya., and Stepanov, V.A., Eur. J. Mass Spectrom., 2016, vol. 22, no. 3, p. 115.CrossRefGoogle Scholar
  4. 4.
    March, R.E., Int. J. Mass Spectrom. Ion Processes, 1992, vol. 118–119, p. 71.CrossRefGoogle Scholar
  5. 5.
    Schwartz, J.C., Syka, J.E.P., and Jardine, I., J. Am. Soc. Mass Spectrom., 1991, vol. 2, no. 3, p. 198.CrossRefGoogle Scholar
  6. 6.
    Arnold, N.S., Hars, G., and Meuzelaar, H.L.C., J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 7, p. 676.CrossRefGoogle Scholar
  7. 7.
    Goeringer, D.E., Whitten, W.B., Ramsey, J.M., et al., Anal. Chem., 1992, vol. 64, no. 13, p. 1434.CrossRefGoogle Scholar
  8. 8.
    Hager, J.W., Rapid Commun. Mass Spectrom., 2002, vol. 16, no. 6, p. 512.CrossRefGoogle Scholar
  9. 9.
    Schwartz, J.C., Senko, M.W., and Syka, J.P., J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 6, p. 659.CrossRefGoogle Scholar
  10. 10.
    Remes, P.M., Syka, J.E.P., Kovtoun, V.V., et al., Int. J. Mass Spectrom. Ion Processes, 2014, vol. 370, p. 44.CrossRefGoogle Scholar
  11. 11.
    Douglas, D.J. and Konenkov, N.V., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 5, p. 430.CrossRefGoogle Scholar
  12. 12.
    Douglas, D.J. and Konenkov, N.V., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 21, p. 2252.CrossRefGoogle Scholar
  13. 13.
    Wolfram. Mathematica. http://www.wolfram.com. Accessed December 5, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. E. Seregin
    • 1
  • N. V. Konenkov
    • 1
    Email author
  • A. S. Berdnikov
    • 2
  1. 1.Ryazan State UniversityRyazanRussia
  2. 2.Institute for Analytical Instrumentation, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations