Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1353–1356 | Cite as

Use of Molecular Weight and Elemental Composition as an Additional Constraint in Library Search

  • A. S. SamokhinEmail author
  • K. M. Sotnezova
  • I. A. Revelsky


Identification of organic compounds based only on searching against electron ionization mass spectral libraries is tentative. To increase the reliability of the identification, additional information should be used. Gas chromatographic retention indices, in addition to mass spectra, are most often used. Molecular weight and elemental composition is less frequently used, because additional experiments are required to determine these characteristics. In the present paper, we examined the influence of the molecular weight, elements present in a molecule and molecular formula on the results of the library search. It is shown that, determination of the nominal mass or molecular formula slightly increases efficiency of the library search (for example, probability that the correct compound occupies the first position in the list of possible candidates increases by only 2.8 and 3.0% respectively). On the other hand, use of additional constraints in the library search can significantly reduce the number of possible candidates and simplify predicting the absence of compound in the database.


mass spectral library mass spectral database electron ionization identification NIST molecular weight elemental composition 



The reported study was funded by the Russian Foundation for Basic Research, according to the research project no. 16-33-60169 mol_а_dk.


  1. 1.
    Dalluge, J., van Stee, L.L.P., Xu, X., et al., J. Chromatogr. A, 2002, vol. 974, nos. 1–2, p. 169.CrossRefGoogle Scholar
  2. 2.
    Ozel, M.Z., Gogus, F., Hamilton, J.F., et al., Chromatographia, 2004, vol. 60, no. 1, p. 79.CrossRefGoogle Scholar
  3. 3.
    Zaikin, V. and Halket, J., A Handbook of Derivatives for Mass Spectrometry, Chichester: IM Publ., 2009.Google Scholar
  4. 4.
    Stein, S.E. and Scott, D.R., J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 9, p. 859.CrossRefGoogle Scholar
  5. 5.
    McLafferty, F.W., Stauffer, D.A., Loh, S.Y., et al., J. Am. Soc. Mass Spectrom., 1999, vol. 10, no. 12, p. 1229.CrossRefGoogle Scholar
  6. 6.
    Ausloos, P., Clifton, C.L., Lias, S.G., et al., J. Am. Soc. Mass Spectrom., 1999, vol. 10, no. 4, p. 287.CrossRefGoogle Scholar
  7. 7.
    Koo, I., Kim, S., and Zhang, X., J. Chromatogr. A, 2013, vol. 1298, p. 132.CrossRefGoogle Scholar
  8. 8.
    Samokhin, A., Sotnezova, K., Lashin, V., et al., J. Mass Spectrom., 2015, vol. 50, no. 6, p. 820.CrossRefGoogle Scholar
  9. 9.
    Silva-Wilkinson, R.A., Burkhard, L.P., Sheedy, B.R., et al., Arch. Environ. Contam. Toxicol., 1999, vol. 36, no. 2, p. 109.CrossRefGoogle Scholar
  10. 10.
    Zenkevich, I.G., Mass-Spektrom., 2012, vol. 9, no. 3, p. 202.Google Scholar
  11. 11.
    Babushok, V.I., Linstrom, P.J., Reed, J.J., et al., J. Chromatogr. A, 2007, vol. 1157, nos. 1–2, p. 414.CrossRefGoogle Scholar
  12. 12.
    Harrison, A.G., Chemical Ionization Mass Spectrometry, Boca Raton: CRC, 1992.Google Scholar
  13. 13.
    Revelsky, I.A., Yashin, Y.S., Sobolevsky, T.G., et al., Eur. J. Mass Spectrom., 2003, vol. 9, no. 5, p. 497.CrossRefGoogle Scholar
  14. 14.
    Hanley, L. and Zimmermann, R., Anal. Chem., 2009, vol. 81, no. 11, p. 4174.CrossRefGoogle Scholar
  15. 15.
    Alon, T. and Amirav, A., Rapid Commun. Mass Spectrom., 2015, vol. 29, no. 23, p. 2287.CrossRefGoogle Scholar
  16. 16.
    Samokhin, A.S. and Revelsky, I.A., J. Anal. Chem., 2012, vol. 67, no. 14, p. 1066.CrossRefGoogle Scholar
  17. 17.
    Gwak, S., Arroyo-Mora, L.E., and Almirall, J.R., Drug Test. Anal., 2015, vol. 7, no. 2, p. 121.CrossRefGoogle Scholar
  18. 18.
    Kind, T. and Fiehn, O., BMC Bioinf., 2007, vol. 8, no. 105, p. 1.CrossRefGoogle Scholar
  19. 19.
    Abate, S., Ahn, Y.G., Kind, T., et al., Rapid Commun. Mass Spectrom., 2010, vol. 24, no. 8, p. 1172.CrossRefGoogle Scholar
  20. 20.
    Chernetsova, E.S., Revel’skii, A.I., Revel’skii, I.A., et al., J. Anal. Chem., 2010, vol. 65, no. 8, p. 788.Google Scholar
  21. 21.
    Hankemeier, Th., Rozenbrand, J., Abhadur, M., et al., Chromatographia, 1998, vol. 48, nos. 3–4, p. 273.CrossRefGoogle Scholar
  22. 22.
    van Stee, L.L.P., Leonards, P.E.G., Vreuls, R.J.J., et al., Analyst, 1999, vol. 124, no. 11, p. 1547.CrossRefGoogle Scholar
  23. 23.
    Zenkevich, I.G. and Ioffe, B.V., Interpretatsiya mass-spektrov organicheskikh soedinenii (Interpretation of Mass Spectra of Organic Compounds), Leningrad: Khimiya, 1986.Google Scholar
  24. 24.
    Sotnezova, K.M., Samokhin, A.S., and Revelsky, I.A., J. Anal. Chem., 2017, vol. 72, no. 14, p. 1419.CrossRefGoogle Scholar
  25. 25.
    Lebedev, A.T., Polyakova, O.V., Mazur, D.M., et al., J. Anal. Chem., 2012, vol. 67, no. 14, p. 1039.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Samokhin
    • 1
    Email author
  • K. M. Sotnezova
    • 1
  • I. A. Revelsky
    • 1
  1. 1.Chemistry Department, Moscow State UniversityMoscowRussia

Personalised recommendations