Journal of Analytical Chemistry

, Volume 73, Issue 13, pp 1217–1222 | Cite as

A Comparison of “Low-Molecular” and Conventional Approaches to the Species Identification of Bacteria by MALDI Mass Spectrometry

  • B. L. MilmanEmail author
  • V. V. Gostev
  • A. V. Dmitriev


A new approach to bacteria identification that uses the standard software for building mass spectral libraries of low-molecular compounds and for corresponding library searches is compared with the conventional approach based on the commercial Biotyper software and database. The results are obtained for a random sample of 100 mass spectra of 25 strains of S. pyogenes, S. dysgalactiae subsp. equisimilis, and S. anginosus. The spectra were sampled from the database of 728 mass spectra of 182 strains for some Streptococcus species. Both approaches were proved to result in the similar identification as 80–88% of the true outcomes. For similar reference mass spectra and the same identification criteria, the results of identification were very close to each other as 24 agreements for 25 strains. This is because different estimations of mass spectral similarity included in the programs under comparison lead to a correlation of similarity indicators. The difference in usual identification results is mainly due to different reference databases and also different identification criteria.


mass spectrometry MALDI identification bacteria mass spectral libraries 



  1. 1.
    Fenselau, C. and Demirev, P.A., Mass Spectrom. Rev., 2001, vol. 20, no. 4, p. 157.CrossRefGoogle Scholar
  2. 2.
    Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., and Geider, K., PLoS One, 2008, vol. 3, no. 7.Google Scholar
  3. 3.
    Sandrin, T.R., Goldstein, J.E., and Schumaker, S., Mass Spectrom. Rev., 2013, vol. 32, no. 3, p. 188.CrossRefGoogle Scholar
  4. 4.
    Kim, T.S., Lee, K., Hong, Y.J., Hwang, S.M., Park, J.S., Park, K.U., Song, J., and Kim, E.C., Lab. Med. Online, 2015, vol. 5, no. 4, p. 176.CrossRefGoogle Scholar
  5. 5.
    Milman, B.L., Ilyasov, Yu.Yu., Lugovkina, N.V., Golovina, A.A., and Dmitriev, A.V., J. Anal. Chem., 2017, vol. 72, no. 13, p. 1280.CrossRefGoogle Scholar
  6. 6.
    MALDI Biotyper User Manual, ver. 2.0 SR1, Bruker Daltonics, Germany, 2008.Google Scholar
  7. 7.
    Random Integer Generator. integers. Accessed September 9, 2016.Google Scholar
  8. 8.
    NIST MS Search Program. mass-spc/ms-search. Accessed May 23, 2016.Google Scholar
  9. 9.
    Shor, Ya.B., Statisticheskie metody analiza i kontrolya kachestva i nadezhnosti (Statistical Methods of Analysis and Quality and Reliability Control), Moscow: Sov. Radio, 1962, p. 191.Google Scholar
  10. 10.
    Handbook of Applicable Mathematics, Ledermann, W. and Lloyd, E., Eds., vol. 6: Statistics, Chichester: Wiley, 1984, part A.Google Scholar
  11. 11.
    Sample Size Calculator. http://www.surveysystem. com/sscalc.htm. Accessed May 23, 2016.Google Scholar
  12. 12.
    Statistical Significance Calculator. www. Accessed May 23, 2016.Google Scholar
  13. 13.
    Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J. M., and Raoult, D., Clin. Infect. Dis., 2009, vol. 49, no. 4, p. 543.CrossRefGoogle Scholar
  14. 14.
    Van Veen, S.Q., Claas, E.C.J., and Kuijper, E.J., J. Clin. Microbiol., 2010, vol. 48, no. 3, p. 900.CrossRefGoogle Scholar
  15. 15.
    Saffert, R.T., Cunningham, S.A., Ihde, S.M., Jobe, K.E.M., Mandrekar, J., and Patel, R., J. Clin. Microbiol., 2011, vol. 49, no. 3, p. 887.CrossRefGoogle Scholar
  16. 16.
    Schulthess, B., Bloemberg, G.V., Zbinden, R., Böt-tger, E.C., and Hombach, M., J. Clin. Microbiol., 2014, vol. 52, no. 4, p. 1089.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Experimental MedicineSt. PetersburgRussia
  2. 2.Scientific Research Institute of Childhood InfectionsSt. PetersburgRussia

Personalised recommendations