Methodological Problems in the Replacement of Discrete Mass Spectrometric Models by Continuum Models
- 9 Downloads
Abstracts
Two problems of mass spectrometry, namely, involving the model of chemical kinetics of cluster formation and the model of the pseudopotential of stroboscopic samples of coordinates and ion velocities in quadrupole radio frequency fields, are considered as the examples in investigating the relationship between discrete models with finite-difference equations and continuum models with point derivatives. In developing continuum models, integer indices are replaced by real parameters, and finite-difference relations are replaced by approximate differential relations involving derivatives. It is shown that this procedure is not reliable: the discrete model and the continuum model can diverge globally, even if for intuitive reasons it is expected that the models should be close. As a result, the transfer of the conclusions obtained for the approximate continuum model to the exact physical model can lead to conceptually significant errors and requires the investigator to be careful. In particular, the continuum model of the chemical kinetics of cluster formation and the continuum model of the pseudopotential of stroboscopic samples of coordinates and ion velocities in quadrupole radio frequency fields, considered as an example, are both insolvent.
Keywords:
mass spectrometry models discrete models continuum models finite-difference equations models of chemical kinetics cluster formation models quadrupole radio frequency fields pseudopotential of a radio frequency electric fieldNotes
ACKNOWLEDGMENTS
The work was supported by the Ministry of Education and Science of the Russian Federation, grant no. 3.9506.2017/VSN, and the Russian Foundation for Basic Research, project no. 07-17-00418.
REFERENCES
- 1.Semenov, N.N., Russ. Chem. Rev., 1967, vol. 36, no. 1, p. 1.CrossRefGoogle Scholar
- 2.Knorre, D.G. and Emanuel’, N.M., Kurs khimicheskoi kinetiki (Chemical Kinetics), Moscow: Vysshaya Shkola, 1984, 4th ed.Google Scholar
- 3.Kuni, F.M., Problems of condensation kinetics, Preprint Bogolyubov Inst. Theor. Phys., Kiev, 1983, no. 83-79Z.Google Scholar
- 4.Bogdanov, A.V., Gorbachev, Yu.E., Dubrovskii, G.V., Itkin, F.L., and Kolesnichenko, E.G., Equilibrium solutions of the quasi-chemical condensation model, Preprint Ioffe Phys.-Tech. Inst., Leningrad, 1987, no. 1163.Google Scholar
- 5.Berdnikov, A.S., Verenchikov, A.N., and Dubrovskii, V.G., in Nauchnoe priborostroenie. Formirovanie puchkov zaryazhennykh chastits. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Formation of Beams of Charged Particles. Collection of Scientific Works of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1990, p. 3.Google Scholar
- 6.Dubrovskii, V.G., in Nauchnoe priborostroenie. Formirovanie puchkov zaryazhennykh chastits. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Formation of Beams of Charged Particles. Collection of Scientific Works of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1990, p. 14.Google Scholar
- 7.Dubrovskii, V.G., Prikl. Mekh. Tekh. Fiz., 1990, vol. 49, no. 1, p. 3.Google Scholar
- 8.Dubrovskii, G.V., Dubrovskii, V.G., and Gorbachev, Yu.E., Nauchn. Priborostr., 1992, vol. 2, no. 4, p. 85.Google Scholar
- 9.Dubrovskii, V.G., Phys. Rev. E, 2017, vol. 95, no. 1, 012135.CrossRefGoogle Scholar
- 10.Blinder, R., Stauffer, D., and Müller-Krumbhaar, H., Phys. Rev. B: Solid State, 1974, vol. 10, no. 9, p. 3853.CrossRefGoogle Scholar
- 11.Blinder, R., Stauffer, D., and Müller-Krumbhaar, H., Phys. Rev. B: Solid State, 1977, vol. 12, no. 11, p. 5261.CrossRefGoogle Scholar
- 12.Au-Yang, H. and McCoy, B.M., Phys. Rev. B: Solid State, 1974, vol. 10, no. 9, p. 3885.CrossRefGoogle Scholar
- 13.Stepanov, I.A., Nano Sci. Nano Technol.: Indian J., 2012, vol. 6, no. 3, p. 118.Google Scholar
- 14.Wasserman, F., Neural Computing: Theory and Practice, New York: Van Nostrand Reinhold, 1989.Google Scholar
- 15.Haykin, S., Neural Networks: A Comprehensive Foundation, Upper Saddle River, NJ: Prentice Hall, 2001.Google Scholar
- 16.Baxter, R., Exactly Solved Models in Statistical Mechanics, London: Academic, 1982.Google Scholar
- 17.Chaikin, P.M. and Lubensky, T.C., Principles of Condensed Matter Physics, Cambridge: Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
- 18.Vorob’ev, N.N., Chisla Fibonachchi (Fibonacci Numbers), vol. 6 of Populyarnye lektsii po matematike (Popular Lectures on Mathematics), Moscow: Nauka, 1978, 4th ed.Google Scholar
- 19.Markushevich, A.I., Vozvratnye posledovatel’nosti (Return Sequences), vol. 1 of Populyarnye lektsii po matematike (Popular Lectures on Mathematics), Moscow: Gos. Izd. Tekh. Teor. Lit., 1950.Google Scholar
- 20.Knuth, D.E., The Art of Computer Programming, vol. 1: Fundamental Algorithms, Upper Saddle River, NJ: Addison-Wesley, 1997, 3rd ed.Google Scholar
- 21.Knuth, D.E., Graham, R.L., and Patashnik, O., Concrete Mathematics: A Foundation for Computer Science, Upper Saddle River, NJ: Addison-Wesley, 1994.Google Scholar
- 22.Cavalieri, B.F., Geometria indivisibilibus continuorum nova quadam ratione promota (Geometry Described by Means of Indivisible Continuous), Bologna: Clementis Ferronij, 1635.Google Scholar
- 23.Wieleitner, H., Die Geschichte der Mathematik von Descartes bis zum Hälfte des 19 Jahrhunderts (The History of Mathematics from Descartes to the Middle of the 19th Century), Berlin: Walter de Gruyter, 1923.Google Scholar
- 24.Boss, V., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), vol. 11 of Lektsii po matematike (Lectures on Mathematics), Moscow: Editorial URSS, 2016, 4th ed.Google Scholar
- 25.Kebarle, P., Haynes, R.N., and Collins, J.G., J. Am. Chem. Soc., 1967, vol. 89, no. 23, p. 5753.CrossRefGoogle Scholar
- 26.Kebarle, P., Searles, S.K., Zolla, A., Scarborough, J., and Arshadi, M., J. Am. Chem. Soc., 1967, vol. 89, no. 25, p. 6393.CrossRefGoogle Scholar
- 27.Searcy, J.Q. and Fenn, J.B., J. Chem. Phys., 1974, vol. 61, no. 7, p. 5282.CrossRefGoogle Scholar
- 28.Searcy, J.Q., J. Chem. Phys., 1975, vol. 63, no. 10, p. 4114.CrossRefGoogle Scholar
- 29.Kambara, H. and Kanomata, I., Anal. Chem., 1977, vol. 49, p. 270.CrossRefGoogle Scholar
- 30.Kambara, H. and Kanomata, I., Int. J. Mass Spectrom. Ion Phys., 1977, vol. 25, no. 2, p. 129.CrossRefGoogle Scholar
- 31.Rebrov, A.K., in Molekulyarnaya i gazovaya dinamika. Sbornik nauchnykh trudov ITF SO AN SSSR (Molecular and Gas Dynamics: Collection of Scientific Papers of Inst. Theor. Phys., Sib. Branch, USSR Acad. Sci.), Novosibirsk: Inst. Teor. Fiz., Sib. Otd., Akad. Nauk SSSR, 1982, p. 58.Google Scholar
- 32.Krasnov, N.V., Kusner, Yu.S., Nikolaev, V.I., Prikhod’ko, V.G., and Shkurov, V.A., Zh. Tekh. Fiz., 1984, vol. 54, no. 11, p. 2212.Google Scholar
- 33.Gall’, L.N., Krasnov, N.V., Kusner, Yu.S., and Nikolaev, V.I., Pis’ma Zh. Exp. Tekh. Fiz., 1985, vol. 41, p. 203.Google Scholar
- 34.Kusner, Yu.S. and Aleksandrov, M.L., Gazodinamicheskie molekulyarnye, ionnye i klastirovannye puchki (Gas-Dynamic Molecular, Ion, and Clustered Beams), Velikhov, E.P., Ed., Leningrad: Nauka, 1989.Google Scholar
- 35.Krasnov, N.V., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: Inst. Anal. Instrumentation, USSR Acad. Sci., 1990.Google Scholar
- 36.Balakin, A.A., Dodonov, A.F., Novikova, L.I., and Talrose, V.L., Rapid Commun. Mass Spectrom., 2001, vol. 15, no. 7, p. 489.CrossRefGoogle Scholar
- 37.Zischang, J. and Suhm, M.A., J. Chem. Phys., 2013, vol. 139, no. 2, 024201.CrossRefGoogle Scholar
- 38.Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Dokl. Akad. Nauk SSSR, Ser.: Fiz. Khim., 1983, vol. 277, no. 2, p. 379.Google Scholar
- 39.Gall’, L.N., Doctoral (Phys.–Math.) Dissertation, Leningrad: Leningrad. Polytech. Inst., Sci. Tech. Department of the USSR Acad. Sci., 1983.Google Scholar
- 40.Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Zh. Tekh. Fiz., 1984, vol. 54, no. 8, p. 1559.Google Scholar
- 41.Nikolaev, V.I., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: Leningrad. Polytech. Inst., 1985.Google Scholar
- 42.Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., Verenchikov, A.N., and Aleksandrov, M.L., in Mass-spektrometriya i khimicheskaya kinetika (Mass Spectrometry and Chemical Kinetics), Tal’roze, V.L., Ed., Moscow: Nauka, 1985, p. 314.Google Scholar
- 43.Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Zh. Anal. Khim., 1985, vol. 40, no. 6, p. 1160.Google Scholar
- 44.Dudnikov, V.G. and Shabalin, A.L., Electrohydrodynamic sources of ion beams, Preprint of the Inst. Nucl. Phys., Sib. Branch, USSR Acad. Sci., Novosibirsk, 1987, no. 87-63.Google Scholar
- 45.Gall’, L.N., Verenchikov, A.N., Krasnov, N.V., Chuprikov, A.V., Babain, V.A., Shkurov, V.A., and Shadrin, A.Yu., in Nauchnoe priborostroenie. Metody i pribory biotekhnologii. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Methods and Devices of Biotechnology. Collection of Scientific Papers of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1988, p. 16.Google Scholar
- 46.Grigor’ev, A.I. and Shiryaeva, S.O., in Nauchnoe priborostroenie. Fizika analiticheskikh priborov. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Physics of Analytical Instruments. Collection of Scientific Papers of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1989, p. 28.Google Scholar
- 47.Koshlyakov, N.S., Osnovnye differentsial’nye uravneniya matematicheskoi fiziki (Fundamental Differential Equations of Mathematical Physics), Leningrad: Otd. Nauchn.-Tekh. Inf., 1936, 4th ed.Google Scholar
- 48.Koshlyakov, N.S., Gliner, E.B., and Smirnov, M.M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki (Equations in Partial Derivatives of Mathematical Physics), Moscow: Vysshaya Shkola, 1970.Google Scholar
- 49.Heer, C.V., Statistical Mechanics, Kinetic Theory, and Stochastic Processes, New York: Academic, 1972.Google Scholar
- 50.Levi, P., Stokhasticheskie protsessy i brounovskoe dvizhenie (Stochastic Processes and Brownian Motion), Moscow: Nauka, 1972.Google Scholar
- 51.Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), vol. 10 of Teoreticheskaya fizika (Theoretical Physics), Moscow: Nauka, 1979.Google Scholar
- 52.Levich, V.G., Vdovin, Yu.A., and Myamlin, V.A., Kurs teoreticheskoi fiziki (Theoretical Physics), vol. 2: Kvantovaya mekhanika, kvantovaya statistika i fizicheskaya kinetika (Quantum Mechanics, Quantum Statistics, and Physical Kinetics), Moscow: Nauka, 1971, 2nd ed.Google Scholar
- 53.Matematicheskaya entsiklopediya (Mathematical Encyclopedia), Moscow: Sovetskaya entsiklopediya, 1977–1985.Google Scholar
- 54.Leonov, V.P. and Shiryaev, A.N., Teor. Veroyatn. Ee Primen., 1959, vol. 4, no. 3, p. 342.Google Scholar
- 55.Prokhorov, Yu.V. and Rozanov, Yu.A., Teoriya veroyatnostei (Probability Theory), Ser.: Spravochnaya matematicheskaya biblioteka (Reference Mathematical Library), Moscow: Nauka, 1973, 2nd ed.Google Scholar
- 56.Malakhov, A.N., Kumulyantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii (Cumulant Analysis of Random Non-Gaussian Processes and Their Transformation), Moscow: Sovetskoe Radio, 1978.Google Scholar
- 57.Hartley, R.V.L., Proc. IRE, 1942, vol. 30, no. 3, p. 144.Google Scholar
- 58.Bracewell, R.N., The Hartley Transform, New York: Oxford Univ. Press, 1986.Google Scholar
- 59.Mitina, G.V., Yuzikhin, O.S., Isangalin, F.Sh., and Yakimov, A.P., Nauchn. Priborostr., 2012, vol. 22, no. 2, p. 3.Google Scholar
- 60.Mitina, G.V., Tokarev, Yu.S., and Uli-Mattila, T., Evraziat. Entomolog. Zh., 2013, vol. 12, no. 5, p. 431.Google Scholar
- 61.Mitina, G.V., Mikhailova, L.A., and Yli-Mattila, T., Arch. Phytopathol. Plant Prot., 2008, vol. 41, no. 2, p. 113.CrossRefGoogle Scholar
- 62.Mitina, G.V. and Yli-Mattila, T., J. Russ. Phytopathol. Soc., 2002, vol. 3, p. 7.Google Scholar
- 63.Sudakov, M.Yu. and Apatskaya, M.V., JETP, 2012, vol. 115, no. 2, p. 194.CrossRefGoogle Scholar
- 64.McLachlan, N.W., Theory and Applications of Mathieu Functions, Oxford: Clarendon, 1947.Google Scholar
- 65.Bondarenko, G.V., Uravnenie Khilla i ego primenenie v oblasti tekhnicheskikh kolebanii (The Hill Equation and Its Application in the Field of Technical Oscillations), Moscow: Akad. Nauk SSSR, 1936.Google Scholar
- 66.Yakubovich, V.A. and Starzhinskii, V.M., Lineinye differentsial’nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya (Linear Differential Equations with Periodic Coefficients and Their Applications), Moscow: Nauka, 1972.Google Scholar
- 67.Slobodenyuk, G.I., Kvadrupol’nye mass-spektrometry (Quadrupole Mass Spectrometers), Moscow: Atomizdat, 1974.Google Scholar
- 68.Quadrupole Mass Spectrometry and Its Applications, Dawson, P.H., Ed., Amsterdam: Elsevier, 1976.Google Scholar
- 69.Dawson, P.H., Adv. Electron. Electron Phys., 1980, vol. 53, p. 153.CrossRefGoogle Scholar
- 70.March, R.E. and Hughes, R.J., Quadrupole Storage Mass Spectrometry, New York: Wiley, 1989.Google Scholar
- 71.Konenkov, N.V., Sudakov, M., and Douglas, D.J., J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 6, p. 597.CrossRefGoogle Scholar
- 72.Verentchikov, A., Berdnikov, A., and Yavor, M., Phys. Procedia, 2008, vol. 1, p. 87.CrossRefGoogle Scholar
- 73.Douglas, D.J., Berdnikov, A.S., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2015, vol. 377, p. 345.CrossRefGoogle Scholar
- 74.Berdnikov, A.S., Douglas, D.J., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2017 (in press).Google Scholar
- 75.Boss, V., Lektsii po teorii upravleniya (Lectures on the Theory of Management), 2 vols., Moscow: Editorial URSS, Lenand, 2014.Google Scholar
- 76.Sudakov, M.Yu. and Mamontov, E.V., Tech. Phys., 2016, vol. 61, no. 11, p. 1715.CrossRefGoogle Scholar