Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 13, pp 1229–1241 | Cite as

Methodological Problems in the Replacement of Discrete Mass Spectrometric Models by Continuum Models

  • A. S. BerdnikovEmail author
  • A. N. Verentchikov
  • N. V. Konenkov
ARTICLES
  • 9 Downloads

Abstracts

Two problems of mass spectrometry, namely, involving the model of chemical kinetics of cluster formation and the model of the pseudopotential of stroboscopic samples of coordinates and ion velocities in quadrupole radio frequency fields, are considered as the examples in investigating the relationship between discrete models with finite-difference equations and continuum models with point derivatives. In developing continuum models, integer indices are replaced by real parameters, and finite-difference relations are replaced by approximate differential relations involving derivatives. It is shown that this procedure is not reliable: the discrete model and the continuum model can diverge globally, even if for intuitive reasons it is expected that the models should be close. As a result, the transfer of the conclusions obtained for the approximate continuum model to the exact physical model can lead to conceptually significant errors and requires the investigator to be careful. In particular, the continuum model of the chemical kinetics of cluster formation and the continuum model of the pseudopotential of stroboscopic samples of coordinates and ion velocities in quadrupole radio frequency fields, considered as an example, are both insolvent.

Keywords:

mass spectrometry models discrete models continuum models finite-difference equations models of chemical kinetics cluster formation models quadrupole radio frequency fields pseudopotential of a radio frequency electric field 

Notes

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science of the Russian Federation, grant no. 3.9506.2017/VSN, and the Russian Foundation for Basic Research, project no. 07-17-00418.

REFERENCES

  1. 1.
    Semenov, N.N., Russ. Chem. Rev., 1967, vol. 36, no. 1, p. 1.CrossRefGoogle Scholar
  2. 2.
    Knorre, D.G. and Emanuel’, N.M., Kurs khimicheskoi kinetiki (Chemical Kinetics), Moscow: Vysshaya Shkola, 1984, 4th ed.Google Scholar
  3. 3.
    Kuni, F.M., Problems of condensation kinetics, Preprint Bogolyubov Inst. Theor. Phys., Kiev, 1983, no. 83-79Z.Google Scholar
  4. 4.
    Bogdanov, A.V., Gorbachev, Yu.E., Dubrovskii, G.V., Itkin, F.L., and Kolesnichenko, E.G., Equilibrium solutions of the quasi-chemical condensation model, Preprint Ioffe Phys.-Tech. Inst., Leningrad, 1987, no. 1163.Google Scholar
  5. 5.
    Berdnikov, A.S., Verenchikov, A.N., and Dubrovskii, V.G., in Nauchnoe priborostroenie. Formirovanie puchkov zaryazhennykh chastits. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Formation of Beams of Charged Particles. Collection of Scientific Works of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1990, p. 3.Google Scholar
  6. 6.
    Dubrovskii, V.G., in Nauchnoe priborostroenie. Formirovanie puchkov zaryazhennykh chastits. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Formation of Beams of Charged Particles. Collection of Scientific Works of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1990, p. 14.Google Scholar
  7. 7.
    Dubrovskii, V.G., Prikl. Mekh. Tekh. Fiz., 1990, vol. 49, no. 1, p. 3.Google Scholar
  8. 8.
    Dubrovskii, G.V., Dubrovskii, V.G., and Gorbachev, Yu.E., Nauchn. Priborostr., 1992, vol. 2, no. 4, p. 85.Google Scholar
  9. 9.
    Dubrovskii, V.G., Phys. Rev. E, 2017, vol. 95, no. 1, 012135.CrossRefGoogle Scholar
  10. 10.
    Blinder, R., Stauffer, D., and Müller-Krumbhaar, H., Phys. Rev. B: Solid State, 1974, vol. 10, no. 9, p. 3853.CrossRefGoogle Scholar
  11. 11.
    Blinder, R., Stauffer, D., and Müller-Krumbhaar, H., Phys. Rev. B: Solid State, 1977, vol. 12, no. 11, p. 5261.CrossRefGoogle Scholar
  12. 12.
    Au-Yang, H. and McCoy, B.M., Phys. Rev. B: Solid State, 1974, vol. 10, no. 9, p. 3885.CrossRefGoogle Scholar
  13. 13.
    Stepanov, I.A., Nano Sci. Nano Technol.: Indian J., 2012, vol. 6, no. 3, p. 118.Google Scholar
  14. 14.
    Wasserman, F., Neural Computing: Theory and Practice, New York: Van Nostrand Reinhold, 1989.Google Scholar
  15. 15.
    Haykin, S., Neural Networks: A Comprehensive Foundation, Upper Saddle River, NJ: Prentice Hall, 2001.Google Scholar
  16. 16.
    Baxter, R., Exactly Solved Models in Statistical Mechanics, London: Academic, 1982.Google Scholar
  17. 17.
    Chaikin, P.M. and Lubensky, T.C., Principles of Condensed Matter Physics, Cambridge: Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
  18. 18.
    Vorob’ev, N.N., Chisla Fibonachchi (Fibonacci Numbers), vol. 6 of Populyarnye lektsii po matematike (Popular Lectures on Mathematics), Moscow: Nauka, 1978, 4th ed.Google Scholar
  19. 19.
    Markushevich, A.I., Vozvratnye posledovatel’nosti (Return Sequences), vol. 1 of Populyarnye lektsii po matematike (Popular Lectures on Mathematics), Moscow: Gos. Izd. Tekh. Teor. Lit., 1950.Google Scholar
  20. 20.
    Knuth, D.E., The Art of Computer Programming, vol. 1: Fundamental Algorithms, Upper Saddle River, NJ: Addison-Wesley, 1997, 3rd ed.Google Scholar
  21. 21.
    Knuth, D.E., Graham, R.L., and Patashnik, O., Concrete Mathematics: A Foundation for Computer Science, Upper Saddle River, NJ: Addison-Wesley, 1994.Google Scholar
  22. 22.
    Cavalieri, B.F., Geometria indivisibilibus continuorum nova quadam ratione promota (Geometry Described by Means of Indivisible Continuous), Bologna: Clementis Ferronij, 1635.Google Scholar
  23. 23.
    Wieleitner, H., Die Geschichte der Mathematik von Descartes bis zum Hälfte des 19 Jahrhunderts (The History of Mathematics from Descartes to the Middle of the 19th Century), Berlin: Walter de Gruyter, 1923.Google Scholar
  24. 24.
    Boss, V., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), vol. 11 of Lektsii po matematike (Lectures on Mathematics), Moscow: Editorial URSS, 2016, 4th ed.Google Scholar
  25. 25.
    Kebarle, P., Haynes, R.N., and Collins, J.G., J. Am. Chem. Soc., 1967, vol. 89, no. 23, p. 5753.CrossRefGoogle Scholar
  26. 26.
    Kebarle, P., Searles, S.K., Zolla, A., Scarborough, J., and Arshadi, M., J. Am. Chem. Soc., 1967, vol. 89, no. 25, p. 6393.CrossRefGoogle Scholar
  27. 27.
    Searcy, J.Q. and Fenn, J.B., J. Chem. Phys., 1974, vol. 61, no. 7, p. 5282.CrossRefGoogle Scholar
  28. 28.
    Searcy, J.Q., J. Chem. Phys., 1975, vol. 63, no. 10, p. 4114.CrossRefGoogle Scholar
  29. 29.
    Kambara, H. and Kanomata, I., Anal. Chem., 1977, vol. 49, p. 270.CrossRefGoogle Scholar
  30. 30.
    Kambara, H. and Kanomata, I., Int. J. Mass Spectrom. Ion Phys., 1977, vol. 25, no. 2, p. 129.CrossRefGoogle Scholar
  31. 31.
    Rebrov, A.K., in Molekulyarnaya i gazovaya dinamika. Sbornik nauchnykh trudov ITF SO AN SSSR (Molecular and Gas Dynamics: Collection of Scientific Papers of Inst. Theor. Phys., Sib. Branch, USSR Acad. Sci.), Novosibirsk: Inst. Teor. Fiz., Sib. Otd., Akad. Nauk SSSR, 1982, p. 58.Google Scholar
  32. 32.
    Krasnov, N.V., Kusner, Yu.S., Nikolaev, V.I., Prikhod’ko, V.G., and Shkurov, V.A., Zh. Tekh. Fiz., 1984, vol. 54, no. 11, p. 2212.Google Scholar
  33. 33.
    Gall’, L.N., Krasnov, N.V., Kusner, Yu.S., and Nikolaev, V.I., Pis’ma Zh. Exp. Tekh. Fiz., 1985, vol. 41, p. 203.Google Scholar
  34. 34.
    Kusner, Yu.S. and Aleksandrov, M.L., Gazodinamicheskie molekulyarnye, ionnye i klastirovannye puchki (Gas-Dynamic Molecular, Ion, and Clustered Beams), Velikhov, E.P., Ed., Leningrad: Nauka, 1989.Google Scholar
  35. 35.
    Krasnov, N.V., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: Inst. Anal. Instrumentation, USSR Acad. Sci., 1990.Google Scholar
  36. 36.
    Balakin, A.A., Dodonov, A.F., Novikova, L.I., and Talrose, V.L., Rapid Commun. Mass Spectrom., 2001, vol. 15, no. 7, p. 489.CrossRefGoogle Scholar
  37. 37.
    Zischang, J. and Suhm, M.A., J. Chem. Phys., 2013, vol. 139, no. 2, 024201.CrossRefGoogle Scholar
  38. 38.
    Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Dokl. Akad. Nauk SSSR, Ser.: Fiz. Khim., 1983, vol. 277, no. 2, p. 379.Google Scholar
  39. 39.
    Gall’, L.N., Doctoral (Phys.–Math.) Dissertation, Leningrad: Leningrad. Polytech. Inst., Sci. Tech. Department of the USSR Acad. Sci., 1983.Google Scholar
  40. 40.
    Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Zh. Tekh. Fiz., 1984, vol. 54, no. 8, p. 1559.Google Scholar
  41. 41.
    Nikolaev, V.I., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: Leningrad. Polytech. Inst., 1985.Google Scholar
  42. 42.
    Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., Verenchikov, A.N., and Aleksandrov, M.L., in Mass-spektrometriya i khimicheskaya kinetika (Mass Spectrometry and Chemical Kinetics), Tal’roze, V.L., Ed., Moscow: Nauka, 1985, p. 314.Google Scholar
  43. 43.
    Gall’, L.N., Krasnov, N.V., Nikolaev, V.I., Shkurov, V.A., and Aleksandrov, M.L., Zh. Anal. Khim., 1985, vol. 40, no. 6, p. 1160.Google Scholar
  44. 44.
    Dudnikov, V.G. and Shabalin, A.L., Electrohydrodynamic sources of ion beams, Preprint of the Inst. Nucl. Phys., Sib. Branch, USSR Acad. Sci., Novosibirsk, 1987, no. 87-63.Google Scholar
  45. 45.
    Gall’, L.N., Verenchikov, A.N., Krasnov, N.V., Chuprikov, A.V., Babain, V.A., Shkurov, V.A., and Shadrin, A.Yu., in Nauchnoe priborostroenie. Metody i pribory biotekhnologii. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Methods and Devices of Biotechnology. Collection of Scientific Papers of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1988, p. 16.Google Scholar
  46. 46.
    Grigor’ev, A.I. and Shiryaeva, S.O., in Nauchnoe priborostroenie. Fizika analiticheskikh priborov. Sbornik nauchnykh trudov NTO AN SSSR (Scientific Instrumentation: Physics of Analytical Instruments. Collection of Scientific Papers of the Scientific and Technical Department of the USSR Academy of Sciences), Leningrad: Nauka, 1989, p. 28.Google Scholar
  47. 47.
    Koshlyakov, N.S., Osnovnye differentsial’nye uravneniya matematicheskoi fiziki (Fundamental Differential Equations of Mathematical Physics), Leningrad: Otd. Nauchn.-Tekh. Inf., 1936, 4th ed.Google Scholar
  48. 48.
    Koshlyakov, N.S., Gliner, E.B., and Smirnov, M.M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki (Equations in Partial Derivatives of Mathematical Physics), Moscow: Vysshaya Shkola, 1970.Google Scholar
  49. 49.
    Heer, C.V., Statistical Mechanics, Kinetic Theory, and Stochastic Processes, New York: Academic, 1972.Google Scholar
  50. 50.
    Levi, P., Stokhasticheskie protsessy i brounovskoe dvizhenie (Stochastic Processes and Brownian Motion), Moscow: Nauka, 1972.Google Scholar
  51. 51.
    Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), vol. 10 of Teoreticheskaya fizika (Theoretical Physics), Moscow: Nauka, 1979.Google Scholar
  52. 52.
    Levich, V.G., Vdovin, Yu.A., and Myamlin, V.A., Kurs teoreticheskoi fiziki (Theoretical Physics), vol. 2: Kvantovaya mekhanika, kvantovaya statistika i fizicheskaya kinetika (Quantum Mechanics, Quantum Statistics, and Physical Kinetics), Moscow: Nauka, 1971, 2nd ed.Google Scholar
  53. 53.
    Matematicheskaya entsiklopediya (Mathematical Encyclopedia), Moscow: Sovetskaya entsiklopediya, 1977–1985.Google Scholar
  54. 54.
    Leonov, V.P. and Shiryaev, A.N., Teor. Veroyatn. Ee Primen., 1959, vol. 4, no. 3, p. 342.Google Scholar
  55. 55.
    Prokhorov, Yu.V. and Rozanov, Yu.A., Teoriya veroyatnostei (Probability Theory), Ser.: Spravochnaya matematicheskaya biblioteka (Reference Mathematical Library), Moscow: Nauka, 1973, 2nd ed.Google Scholar
  56. 56.
    Malakhov, A.N., Kumulyantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii (Cumulant Analysis of Random Non-Gaussian Processes and Their Transformation), Moscow: Sovetskoe Radio, 1978.Google Scholar
  57. 57.
    Hartley, R.V.L., Proc. IRE, 1942, vol. 30, no. 3, p. 144.Google Scholar
  58. 58.
    Bracewell, R.N., The Hartley Transform, New York: Oxford Univ. Press, 1986.Google Scholar
  59. 59.
    Mitina, G.V., Yuzikhin, O.S., Isangalin, F.Sh., and Yakimov, A.P., Nauchn. Priborostr., 2012, vol. 22, no. 2, p. 3.Google Scholar
  60. 60.
    Mitina, G.V., Tokarev, Yu.S., and Uli-Mattila, T., Evraziat. Entomolog. Zh., 2013, vol. 12, no. 5, p. 431.Google Scholar
  61. 61.
    Mitina, G.V., Mikhailova, L.A., and Yli-Mattila, T., Arch. Phytopathol. Plant Prot., 2008, vol. 41, no. 2, p. 113.CrossRefGoogle Scholar
  62. 62.
    Mitina, G.V. and Yli-Mattila, T., J. Russ. Phytopathol. Soc., 2002, vol. 3, p. 7.Google Scholar
  63. 63.
    Sudakov, M.Yu. and Apatskaya, M.V., JETP, 2012, vol. 115, no. 2, p. 194.CrossRefGoogle Scholar
  64. 64.
    McLachlan, N.W., Theory and Applications of Mathieu Functions, Oxford: Clarendon, 1947.Google Scholar
  65. 65.
    Bondarenko, G.V., Uravnenie Khilla i ego primenenie v oblasti tekhnicheskikh kolebanii (The Hill Equation and Its Application in the Field of Technical Oscillations), Moscow: Akad. Nauk SSSR, 1936.Google Scholar
  66. 66.
    Yakubovich, V.A. and Starzhinskii, V.M., Lineinye differentsial’nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya (Linear Differential Equations with Periodic Coefficients and Their Applications), Moscow: Nauka, 1972.Google Scholar
  67. 67.
    Slobodenyuk, G.I., Kvadrupol’nye mass-spektrometry (Quadrupole Mass Spectrometers), Moscow: Atomizdat, 1974.Google Scholar
  68. 68.
    Quadrupole Mass Spectrometry and Its Applications, Dawson, P.H., Ed., Amsterdam: Elsevier, 1976.Google Scholar
  69. 69.
    Dawson, P.H., Adv. Electron. Electron Phys., 1980, vol. 53, p. 153.CrossRefGoogle Scholar
  70. 70.
    March, R.E. and Hughes, R.J., Quadrupole Storage Mass Spectrometry, New York: Wiley, 1989.Google Scholar
  71. 71.
    Konenkov, N.V., Sudakov, M., and Douglas, D.J., J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 6, p. 597.CrossRefGoogle Scholar
  72. 72.
    Verentchikov, A., Berdnikov, A., and Yavor, M., Phys. Procedia, 2008, vol. 1, p. 87.CrossRefGoogle Scholar
  73. 73.
    Douglas, D.J., Berdnikov, A.S., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2015, vol. 377, p. 345.CrossRefGoogle Scholar
  74. 74.
    Berdnikov, A.S., Douglas, D.J., and Konenkov, N.V., Int. J. Mass Spectrom. Ion Processes, 2017 (in press).Google Scholar
  75. 75.
    Boss, V., Lektsii po teorii upravleniya (Lectures on the Theory of Management), 2 vols., Moscow: Editorial URSS, Lenand, 2014.Google Scholar
  76. 76.
    Sudakov, M.Yu. and Mamontov, E.V., Tech. Phys., 2016, vol. 61, no. 11, p. 1715.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Berdnikov
    • 1
    Email author
  • A. N. Verentchikov
    • 2
  • N. V. Konenkov
    • 3
  1. 1.Institute for Analytical Instrumentation, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.MSC-CG (Mass Spectrometry Consulting)BarMontenegro
  3. 3.Department of Physics and Mathematics, Ryazan State UniversityRyazanRussia

Personalised recommendations