Journal of Analytical Chemistry

, Volume 73, Issue 12, pp 1154–1161 | Cite as

Gas Chromatography–Mass Spectrometry Determination of Polycyclic Aromatic Hydrocarbons in Surface Water

  • Z. A. TemerdashevEmail author
  • T. N. Musorina
  • N. V. Kiseleva
  • B. D. Eletskii
  • T. A. Chervonnaya


The current status and problems of the determination of polycyclic aromatic hydrocarbons (PAHs) in surface waters are discussed. Sixteen unsubstituted PAHs, which are priority pollutants of aquatic ecosystems, are selected as analytes. Gas chromatography–mass spectrometry (GC–MS) ensures the identification of the majority of pollutants using an integrated spectral library and their determation at a level below the maximum permissible concentration (MPC). The conditions for the simultaneous determination of 16 unsubstituted PAHs by GC–MS with detection in the selected ion monitoring mode are optimized. PAHs were extracted from a 1-L water sample by ultrasound-assisted liquid–liquid extraction. The main performance characteristics of the procedure were estimated. The lower limit of the analytical range was from 0.5 ng/L (benzo(a)pyrene) to 50 ng/L (naphthalene); the upper limit of the analytical range was 250 ng/L for all PAHs. The procedure was tested in model systems and real samples.


polyaromatic hydrocarbons gas chromatography–mass spectrometry ultrasound-assisted emulsification liquid–liquid extraction surface water 



The study was supported by the Ministry of Education and Science of the Russian Federation, project no. 4.2612.2017/PCh; experiments were carried out with the use of scientific equipment of the Ecological and Analytical Center of the Kuban State University, the unique identifier RFMEFI59317X0008.


  1. 1.
    Bandeira, G.C. and Meneses, H.E., Handbook of Polycyclic Aromatic Hydrocarbons: Chemistry, Occurrence and Health Issues, Hauppauge, NY: NOVA, 2013.Google Scholar
  2. 2.
    Beall, P.W., Stout, S.A., Douglas, G.S., and Uhler, A.D., Environ. Claims J., 2002, vol. 14, p. 487.CrossRefGoogle Scholar
  3. 3.
    Temerdashev, Z.A., Kolychev, I.A., Musorina, T.N., and Arakel’yan, E.V., J. Anal. Chem. 2017, vol. 72, no. 9, p. 999.CrossRefGoogle Scholar
  4. 4.
    Hyotylainen, T. and Oikari, A., Chemosphere, 2004, vol. 57, p. 159.CrossRefGoogle Scholar
  5. 5.
    Binet, S., Pfohl-Leszkowicz, A., Brandt, H., Lafontaine, M., and Castegnaro, M., Sci. Total Environ., 2002, vol. 300, p. 37.CrossRefGoogle Scholar
  6. 6.
    Santasiero, A., Settimo, G., Cappiello, G., Viviano, G., Dell’Andrea, E., and Gentilini, L., Microchem J., 2005, vol. 79, p. 307.CrossRefGoogle Scholar
  7. 7.
    Omar, N.Y.M.J., Abas, M.R.B., Ketuly, K.A., and Tahir, N.M., Atmos. Environ., 2002, vol. 36, p. 247.CrossRefGoogle Scholar
  8. 8.
    Dyke, P.H., Foan, C., and Fiedler, H., Chemosphere, 2003, vol. 50, p. 469.CrossRefGoogle Scholar
  9. 9.
    Sakai, R., Siegmann, H.C., Sato, H., and Voorhees, A.S., Environ. Res., 2002, vol. 89, p. 66.CrossRefGoogle Scholar
  10. 10.
    Polynuclear Aromatic Hydrocarbons (PAHs): Air Quality Guidelines for Europe, Copenhagen: World Health Organization, Regional Office for Europe, 1987.Google Scholar
  11. 11.
    Henner, P., Schiavon, M., Druelle, V., and Lichtfouse, E., Org. Geochem., 1999, vol. 30, p. 963.CrossRefGoogle Scholar
  12. 12.
    Temerdashev, Z.A., Shapoval, E.V., Kolychev, I.A., and Kiseleva, N.V., Zavod. Lab., Diagn. Mater., 2013, vol. 79, no. 10, p. 75.Google Scholar
  13. 13.
    Lichtfouse, É., Budzinski, H., Garrigues, P., and Eglinton, T.I., Org. Geochem., 1997, vol. 26, p. 353.CrossRefGoogle Scholar
  14. 14.
    Lichtfouse, É., Apitz, S., and Nanny, M., Org. Geochem., 1999, vol. 30, p. 873.CrossRefGoogle Scholar
  15. 15.
    IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Human. Polynuclear Aromatic Compounds, vol. 1: Chemical, Environmental, and Experimental Data, Geneva: International Agency for Research on Cancer, World Health Organization, 1983.Google Scholar
  16. 16.
    Menzie, C.A., Potocki, B.B., and Santodonato, J., Environ. Sci. Technol., 1992, vol. 26, p. 1278.CrossRefGoogle Scholar
  17. 17.
    Drugov, Yu.S. and Rodin, A.A., Ekologicheskaya analiticheskaya khimiya (Ecological Analytical Chemistry), St. Petersburg: Anatoliya, 2002.Google Scholar
  18. 18.
    Srogi, K., Environ. Chem. Lett., 2007, vol. 5, p. 169.CrossRefGoogle Scholar
  19. 19.
    Manoli, E. and Samara, C., TrAC, Trends Anal. Chem., 1999, vol. 18, p. 417.CrossRefGoogle Scholar
  20. 20.
    Moore, S.W. and Ramamoorthy, S., Clean: Soil, Air, Water, 1984, vol. 14, p. 198.Google Scholar
  21. 21.
    Dewulf, J., Langenhove, V.H., and Wittmann, G., TrAC, Trends Anal. Chem., 2002, vol. 21, p. 637.CrossRefGoogle Scholar
  22. 22.
    Filipkowska, A., Lubecki, L., and Kowalewska, G., Anal. Chim. Acta, 2005, vol. 547, p. 243.CrossRefGoogle Scholar
  23. 23.
    Avino, P., Notardonato, I., Peruginib, L., and Russo, M.V., Microchem. J., 2017, vol. 133, p. 251.CrossRefGoogle Scholar
  24. 24.
    Kremser, A., Jochmann, M.A., and Schmidt, T.C., Anal. Bioanal. Chem., 2016, vol. 408, p. 943.CrossRefGoogle Scholar
  25. 25.
    Zhu, J., Wang, Q., Li, M., Ren, L., Zheng, B., and Zou, X., Anal. Methods, 2017, vol. 12, p. 1.Google Scholar
  26. 26.
    Mossner, S.G., Lopez, De., Alda, M.J., Sander, L.C., Lee, M.L., and Wise, S.A., J. Chromatogr. A, 1999, vol. 841, p. 207.CrossRefGoogle Scholar
  27. 27.
    Polyakova, O.V., Mazur, D.M., Artaev, V.B., and Lebedev, A.T., J. Anal. Chem., 2013, vol. 68, no. 13, p. 1099.CrossRefGoogle Scholar
  28. 28.
    Junk, G.A. and Richard, J.J., Anal. Chem., 1988, vol. 60, p. 451.CrossRefGoogle Scholar
  29. 29.
    Krylov, A.I., Kostyuk, I.O., and Volynets, N.F., Zh. Anal. Khim., 1995, vol. 50, no. 5, p. 543.Google Scholar
  30. 30.
    Song, X., Li, J., Xu, S., Ying, R., Ma, J., Liao, C., Liu, D., Yu, J., and Chen, L., Talanta, 2012, vol. 99, p. 75.CrossRefGoogle Scholar
  31. 31.
    Turiel, E. and Martín-Esteban, A., Anal. Chim. Acta, 2010, vol. 668, p. 87.CrossRefGoogle Scholar
  32. 32.
    Shi, Z.G. and Lee, H.K., Anal. Chem., 2010, vol. 82, p. 1540.CrossRefGoogle Scholar
  33. 33.
    Petersson, K., Ilver, D., Johansson, C., and Krozer, A., Anal. Chim. Acta, 2006, vols. 573–574, p. 138.CrossRefGoogle Scholar
  34. 34.
    Luque de Castro, M.D. and Priego Capote, F., Tech. Instrum. Anal. Chem., 2007, vol. 26, p. 398.Google Scholar
  35. 35.
    Saleh, A., Yamini, Y., Faraji, M., Rezaee, M., and Ghambarian, M., J. Chromatogr. A, 2009, vol. 1216, p. 6673.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Z. A. Temerdashev
    • 1
    Email author
  • T. N. Musorina
    • 1
  • N. V. Kiseleva
    • 1
  • B. D. Eletskii
    • 2
  • T. A. Chervonnaya
    • 1
  1. 1.Department of Chemistry and High Technology, Kuban State UniversityKrasnodarRussia
  2. 2.Priazovneft’ Oil CompanyKrasnodarRussia

Personalised recommendations