Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 12, pp 1188–1194 | Cite as

Nickel Oxide Nanoparticles Modified Gold Electrode for Fractional Determination of Dopamine and Ascorbic Acid

  • Mohamed I. AwadEmail author
  • B. A. AL Jahdaly
  • Mohammed A. Kassem
  • Omar A. Hazazi
ARTICLES
  • 44 Downloads

Abstract

Dopamine and ascorbic acid has been fractionally determined at nickel oxide nanoparticles (nano-NiOx) modified polycrystalline gold electrode (poly-Au), nano-NiOx/Au, with high selectivity using voltammetric techniques. Nano-NiOx/Au electrode, fabricated electrochemically, could resolve the overlapping obtained at the bare poly-Au electrode. Nano-NiOx/Au electrode was prepared by cycling of potential of Au electrode in diluted Watts bath in the potential range between 0.0 and –1.0 V vs. Ag/AgCl (KCl sat.), and was characterized morphologically and electrochemically. Effect of loading level of nickel was examined by changing the number of potential cycles for the deposition of nickel nanoparticles, i.e., 1, 2 and 5 potential cycles were used. Also the effects of the electrooxidation of the thus deposited nickel nanoparticles and pH of the electrolyte on the voltammetric behavior were investigated. The good calibration curve of an acceptable rectilinear range is obtained at nano-NiOx/Au electrode in which nano-Ni was prepared by two potential cycles and subsequently electro-oxidized in KOH solution.

Keywords:

nanoparticles nickel oxide electrocatalysis electroanalysis dopamine 

Notes

ACKNOWLEDGMENTS

The authors would like to thank Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University (project ID 43405072) for the financial support.

REFERENCES

  1. 1.
    Thomas, T., Mascarenhas, R.J., Kumara Swamy, B.E., Martis, P., Mekhalif, Z., and Sherigara B.S., Colloids Surf., B, 2013, vol. 110, p. 458.CrossRefGoogle Scholar
  2. 2.
    André, C., Castanheira, I., Cruz, J.M., Paseiro, P., and Sanches-Silva, A., Trends Food Sci. Technol., 2010, vol. 21, p. 229.CrossRefGoogle Scholar
  3. 3.
    Noroozifar, M., Khorasani-Motlagh, M., Akbaria, R., and Parizi, M.B., Biosens. Bioelctron., 2011, vol. 28, p. 56.CrossRefGoogle Scholar
  4. 4.
    Etesami, M. and Mohamed, N., Int. J. Electrochem. Sci., 2011, vol. 6, p. 4676.Google Scholar
  5. 5.
    Danial, A.S., Saleh, M.M., Salih, S.A., and Awad, M.I., J. Power Sources, 2015, vol. 293, p. 101.CrossRefGoogle Scholar
  6. 6.
    Kassem, M.A., Hazazi, O.A., Ohsaka, T., and Awad, M.I., Electroanalysis, 2016, vol. 28, p. 539.CrossRefGoogle Scholar
  7. 7.
    El-Refaei, S.M., Saleh, M.M., and Awad, M.I., J. Solid State Electrochem., 2014, vol. 18, p. 5.CrossRefGoogle Scholar
  8. 8.
    El-Refaei, S.M., Saleh, M.M., and Awad, M.I., J. Power Sources, 2013, vol. 223, p. 125.CrossRefGoogle Scholar
  9. 9.
    Awad, M.I., El-Deab, M.S., and Ohsaka, T., J. Electrochem. Soc., 2007, vol. 154, no. 8, p. B810.CrossRefGoogle Scholar
  10. 10.
    Capella, P., Ghasemzadeh, B., Mitchell, K., and Adams, R.N., Electroanalysis, 1990, vol. 2, p. 175.CrossRefGoogle Scholar
  11. 11.
    Justice, J.B., Jr. and Jaramillo, A., J. Electrochem. Soc., 1984, vol. 131, p. 106C.CrossRefGoogle Scholar
  12. 12.
    Zhu, R.H. and Kok, W.T., Anal. Chem., 1997, vol. 69, p. 4010.CrossRefGoogle Scholar
  13. 13.
    Chernyshov, D.V., Shuedene, N.V., Antipova, E.R., and Pletnev, I.V., Anal. Chim. Acta, 2008, vol. 621, p. 178.CrossRefGoogle Scholar
  14. 14.
    Li, L.L., Liu, H.Y., Shen, Y.Y., Zhang, J.R., and Zhu, J.J., Anal. Chem., 2011, vol. 83, p. 661.CrossRefGoogle Scholar
  15. 15.
    Yoshitake, T., Kehr, J., Todoroki, K., Nohta, H., and Yamaguchi, M., Biomed. Chromatogr., 2006, vol. 20, p. 267.CrossRefGoogle Scholar
  16. 16.
    Lei, Z., Jia, J.B., Zou, X.Q., and Dong, S.J., Electroanalysis, 2004, vol. 16, p. 1413.CrossRefGoogle Scholar
  17. 17.
    Park, J.Y., Myung, S.W., Kim, I.S., Choi, D.-K., Kwon, S.J., and Yoon, S.H., Biol. Pharm. Bull., 2013, vol. 36, p. 252.CrossRefGoogle Scholar
  18. 18.
    Han, H.S., Lee, H.K., You, J.M., Jeong, H., and Jeon, S., Sens. Actuators, B, 2014, vol. 190, p. 886.CrossRefGoogle Scholar
  19. 19.
    Rand, E., Periyakaruppan, A., Tanaka, Z., Zhang, D.A., Marsh, M.P., Andrews, R.J., Lee, K.H., Chen, B., Meyyappan, M., and Koehne, J.E., Biosens. Bioelectron., 2013, vol. 42, p. 434.CrossRefGoogle Scholar
  20. 20.
    Raj, C.R. and Ohsaka, T., Electrochem. Commun., 2001, vol. 11, p. 633.Google Scholar
  21. 21.
    Raj, C.R. and Ohsaka, T., Bioelectrochemistry, 2001, vol. 53, p. 251.CrossRefGoogle Scholar
  22. 22.
    Moharana, M. and Mallik, A., Electrochim. Acta, 2013, vol. 98, p. 1.CrossRefGoogle Scholar
  23. 23.
    Awad, M.I. and Ohsaka, T., Sens. Actuators, B, 2015, vol. 221, p. 1335.CrossRefGoogle Scholar
  24. 24.
    Hutton, L.A., Vidotti, M., Patel, A.N., Newton, M.E., Unwin, P.R., and Macpherson, J.V., J. Phys. Chem. C, 2011, vol. 115, p. 1649.CrossRefGoogle Scholar
  25. 25.
    Shaidarova, L.G., Chelnokova, I.A., Gedmina, A.V., and Budnikov, G.K., J. Anal. Chem., 2009, vol. 64, p. 36.CrossRefGoogle Scholar
  26. 26.
    Babaei, A., Aminikhah, M., and Taheri, A.R., Sens. Lett., 2013, vol. 11, p. 413.CrossRefGoogle Scholar
  27. 27.
    Murray, R.W., in Electroanalytical Chemistry, vol. 13, Bard, A.J., Ed., New York: Marcel Dekker, 1984, p. 191.Google Scholar
  28. 28.
    Awad, M.I. and Ohsaka, T., J. Power Sources, 2013, vol. 226, p. 306.CrossRefGoogle Scholar
  29. 29.
    Awad, M.I., Anal. Chim. Acta, 2012, vol. 730, p. 60.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Mohamed I. Awad
    • 1
    • 2
    Email author
  • B. A. AL Jahdaly
    • 1
  • Mohammed A. Kassem
    • 1
    • 3
  • Omar A. Hazazi
    • 1
  1. 1.Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura UniversityMakkah Al-MukarramahSaudi Arabia
  2. 2.Chemistry Department, Faculty of Science, Cairo UniversityCairoEgypt
  3. 3.Chemistry Department, Faculty of Science, Benha UniversityBenhaEgypt

Personalised recommendations