Journal of Analytical Chemistry

, Volume 73, Issue 12, pp 1177–1187 | Cite as

Higher Quaternary Ammonium Salts with a Sterically Hindered Exchange Center: Application to the Development of Ion Selective Electrodes Reversible to Metal Thiocyanate Complexes

  • Yu. V. MatveichukEmail author
  • E. M. Rakhman’ko


Ion-selective electrodes based on a sterically hindered higher quaternary ammonium salt, 3,4,5-trisdodecyloxybenzyltrioctadecylammonium bromide, and a plasticizer, 1-bromonaphthalene, reversible to zinc and cobalt thiocyanate complexes, are developed. They are characterized by high analytical performance. The selective determination of zinc and cobalt on their simultaneous presence is achieved by varying the concentration of ligands (thiocyanate ions) in the supporting electrolyte. The mechanism of the coordination of thiocyanate ions with some d-metal cations was studied by IR spectroscopy. It is shown that zinc and cobalt coordinate SCN ions by the isothiocyanate type, because of which \({\text{Zn(NCS}})_{4}^{{2 - }}\) and \({\text{Co(NCS)}}_{{\text{4}}}^{{{\text{2}} - }}\) ions have a high anion-exchange affinity to the membrane phase. The developed electrodes were used to determine zinc and cobalt in cheese, potatoes, and beets.


metal thiocyanate complexes higher quaternary ammonium salts ion-selective electrodes 



  1. 1.
    Egorov, V.V., Rakhman’ko, E.M., Gulevich, A.L., Lomako, S.V., and Rat’ko, A.A., Russ. J. Coord. Chem., 2002, vol. 28, no. 10, p. 709.CrossRefGoogle Scholar
  2. 2.
    Khimiya psevdogalogenidov (Chemistry of Pseudohalides), Golub, A.M., Keler, Kh., and Skopenko, V.V., Eds., Kiev: Vysshaya Shkova, 1981.Google Scholar
  3. 3.
    Starobinets, G.L., Rakhman’ko, E.M., and Loma-ko, V.L., Zh. Anal. Khim., 1981, vol. 36, no. 7, p. 1305.Google Scholar
  4. 4.
    Obmetko, A.A., Rakhman’ko, E.M., Lomako, V.L., and Starobinets, G.L., Zh. Anal. Khim., 1988, vol. 43, no. 3, p. 444.Google Scholar
  5. 5.
    Obmetko, A.A., Rakhman’ko, E.M., and Loma-ko, V.L., Zh. Anal. Khim., 1990, vol. 45, no. 8, p. 1592.Google Scholar
  6. 6.
    Rakhman’ko, E.M., Egorov, V.V., Tarazevich, M.Ya., and Rubinova, A.D., J. Anal. Chem., 2003, vol. 58, no. 7, p. 691.CrossRefGoogle Scholar
  7. 7.
    Rakhman’ko, E.M. and Matveichuk, Yu.V., Metody Ob”ekty Khim. Anal., 2015, vol. 10, no. 2, p. 61.Google Scholar
  8. 8.
    Matveichuk, Yu.V., Rakhman’ko, E.M., and Zhilko, V.V., Metody Ob”ekty Khim. Anal., 2017, vol. 12, no. 1, p. 24.Google Scholar
  9. 9.
    Keil, B., Protiva, M., and Herout, V., Laboratorní technika organické chemie (Laboratory Technique of Organic Chemistry), Prague: Nakladatelství Československé akademie věd, 1954.Google Scholar
  10. 10.
    Okaev, E.B., Vest. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, 2005, no. 1, p. 53.Google Scholar
  11. 11.
    Makse, L.P., Tomov, A.V., and Markov, P.I., BY Patent (11) 11876 (13), 2009.Google Scholar
  12. 12.
    Koryta, J. and Stulic, K., Iontove-Selektivni Elektrody (Ion-Selective Electrodes), Prague: Academia, 1984.Google Scholar
  13. 13.
    Matveichuk, Yu.V., Rakhman’ko, E.M., Yasinetskii, V.V., and Stanishevskii, L.S., Metody Ob”ekty Khim. Anal., 2012, vol. 7, no. 4, p. 164.Google Scholar
  14. 14.
    Zhivopistsev, V.P. and Selezneva, E.A., Analiticheskaya khimiya tsinka (Analytical Chemistry of Zinc), Moscow: Nauka, 1975.Google Scholar
  15. 15.
    Pyatnitskii, I.V., Analiticheskaya khimiya kobal’ta (Analytical Chemistry of Cobalt), Moscow: Nauka, 1965.Google Scholar
  16. 16.
    Fialkov, Yu.Ya., Rastvoritel’ kak sredstvo upravleniya khimicheskim protsessom (Solvent as a Means for Controlling the Chemical Process), Leningrad: Khimiya, 1990.Google Scholar
  17. 17.
    Fuoss, R.M., J. Am. Chem. Soc., 1958, vol. 80, p. 5059.CrossRefGoogle Scholar
  18. 18.
    Ganjali, M.R., Norouzi, P., Faridbod, F., and Pourjavid, M.R., J. Iran. Chem. Soc., 2007, vol. 4, no. 1, p. 1.CrossRefGoogle Scholar
  19. 19.
    Rakhman’ko, E.M., Kachanovich, I.V., and T’yu Van Bien, Zh. Neorg. Khim., 1991, vol. 36, no. 6, p. 2454.Google Scholar
  20. 20.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.Google Scholar
  21. 21.
    Yatsimirskii, K.B., Pure Appl. Chem., 1977, vol. 49, p. 115.CrossRefGoogle Scholar
  22. 22.
    Llewellyn, H., J. Chem. Phys., 1956, vol. 25, no. 5, p. 1069.CrossRefGoogle Scholar
  23. 23.
    Kharitonov, Yu.Ya., Tsintsadze, G.V., and Tsivadze, A.Yu., Zh. Neorg. Khim., 1970, vol. 15, no. 5, p. 1196.Google Scholar
  24. 24.
    Kharitonov, Yu.Ya., Tsintsadze, G.V., and Tsivadze, A.Yu., Zh. Neorg. Khim., 1970, vol. 15, no. 6, p. 1513.Google Scholar
  25. 25.
    Foil, A. and Miller, Ch.H., Anal. Chem., 1952, vol. 24, no. 8, p. 1253.CrossRefGoogle Scholar
  26. 26.
    Montazerozohori, M., Khani, S., Joohari, S., and Musavi, S.A., E-J. Chem., 2012, vol. 9, no. 4, p. 2483.CrossRefGoogle Scholar
  27. 27.
    Yadav, P. and Sharma, P., VSRD Int. J. Tech. Non-Tech. Res., 2012, vol. 3, no. 10, p. 373.Google Scholar
  28. 28.
    Mckenna, W., Korzbniewski, C., Blackwood, D., and Pons, S., Electrochim. Acta, 1988, vol. 33, no. 7, p. 1019.CrossRefGoogle Scholar
  29. 29.
    Eriksson, A.E., Kylsten, P.M., Jones, T.A., and Liljas, A., Proteins: Struct., Funct., Bioinf., 1988, no. 4, p. 283.Google Scholar
  30. 30.
    Kharitonov, Yu.Ya., Tsintsadze, G.V., and Tsivadze, A.Yu., Inorg. Nucl. Chem. Lett., 1970, vol. 6, no. 2, p. 197.CrossRefGoogle Scholar
  31. 31.
    GOST (State Standard) 26929-94: Raw Material and Foodstuff. Preparation of Samples. Decomposition of Organic Matters for Analysis of Toxic Elements, Moscow: Izd. Standartov, 1994.Google Scholar
  32. 32.
    Mantorova, G.F., Agro XXI, 2010, nos. 1–3, p. 52.Google Scholar
  33. 33.
    Poznyak, S.S., Ekol. Vestn., 2010, vol. 13, no. 3, p. 5.Google Scholar
  34. 34.
    Al-Farhan, B.S., Int. J. Phys. Sci., 2013, vol. 37, no. 8, p. 1830.Google Scholar
  35. 35.
    Ismail, F., Anjum, M.R., Mamon, A.N., and Kazi, T.G., Pak. J. Nutr., 2011, vol. 10, no. 4, p. 365.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Belarusian State UniversityMinskBelarus

Personalised recommendations