Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 6, pp 662–670 | Cite as

Determination of the oxidation state of iron by X-ray fluorescence spectroscopy using chemometric approaches

  • V. V. Panchuk
  • N. O. Rabdano
  • A. A. Goidenko
  • A. V. Grebenyuk
  • S. M. Irkaev
  • V. G. Semenov
Articles

Abstract

A possibility of identification of the oxidation state of iron by wavelength dispersive X-ray fluorescence spectroscopy using both the position and intensity of L α and L β spectral lines of iron and by principal component analysis score data obtained by the decomposition of the spectral region corresponding to spectral L-series lines of iron is demonstrated. The application of scores ensures a more reliable identification in comparison with line parameters (position and intensity). Two approaches based on projection on latent structures (PLS) regression for the determination of the concentration of iron in different oxidation states are proposed. The first approach consists in using reference models with compositions similar to those of analyzed samples. In the second approach, PLS regression was build using model spectra obtained from spectra of readily available iron compounds.

Keywords

X-ray fluorescence spectroscopy oxidation state chemometrics K-nearest neighbors algorithm projection on latent structures principal component analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnarson, L., Rasmussen, S.B., Falsig, H., Lauritsen, J.V., and Moses, P.G., J. Phys. Chem. C, 2015, vol. 119, no. 41, p. 23445.CrossRefGoogle Scholar
  2. 2.
    Maurya, M.R., Haldar, C., Kumar, A., Kuznetsov, M.L., Avecilla, F., and Pessoa, J.C., Dalton Trans., 2013, vol. 42, no. 33, p. 11941.CrossRefGoogle Scholar
  3. 3.
    Teo, L.P., Buraidah, M.H., and Arof, A.K., Ionics, 2015, vol. 21, no. 8, p. 2393.CrossRefGoogle Scholar
  4. 4.
    Apblett, C.A., Stewart, D.M., Fryer, R.T., Sell, J.C., Pratt, H.D.III., Anderson, T.M., and Meulenberg, R.W., Electrochim. Acta, 2015, vol. 185, p. 156.CrossRefGoogle Scholar
  5. 5.
    Nilmoung, S., Kidkhunthod, P., and Maensiri, S., J. Nanosci. Nanotechnol., 2015, vol. 15, no. 11, p. 9250.CrossRefGoogle Scholar
  6. 6.
    Bogdanov, R.V., Skriplev, M.I., Petrunin, A.A., and Titov, A.V., J. Nucl. Mater., 2013, vol. 440, p. 440.CrossRefGoogle Scholar
  7. 7.
    Dacheux, N., Clavier, N., Robisson, A.-C., Terra, O., Audubert, F., Lartigue, J.-E., and Guy, C., C. R. Chim., 2004, vol. 7, no. 12, p. 1141.CrossRefGoogle Scholar
  8. 8.
    Barinskii, R.L. and Nefedov, V.I., Rentgenospektral’noe opredelenie zaryada atomov v molekulakh (X-Ray Spectral Determination of the Charge of Atoms in Molecules), Moscow Nauka, 1966.Google Scholar
  9. 9.
    Mazalov, L.N., Rentgenovskie spektry (X-Ray Spectra), Novosibirsk Inst. Neorg. Khim., Sib. Otd., Ross. Akad. Nauk, 2003.Google Scholar
  10. 10.
    Batrakov, Yu.F., Bogdanov, R.V., Puchkova, E.V., and Sergeev, A.S., Radiochemistry, 2000, vol. 42, no. 2, p. 112.Google Scholar
  11. 11.
    Chubarov, V.M. and Finkel’shtein, A.L., J. Anal. Chem., 2010, vol. 65, no. 6, p. 620.CrossRefGoogle Scholar
  12. 12.
    Benavente, C.A., D’Angelo, J.A., Crespo, E.M., and Mancuso, A.C., Palaios, 2014, vol. 29, no. 9, p. 449.CrossRefGoogle Scholar
  13. 13.
    Ferrer-Eres, M.A., Peris-Vicente, J., Valle-Algarra, F.M., Gimeno-Adelantado, J.V., Sanchez-Ramos, S., and Soriano-Pinol, M.D., Microchem. J., 2010, vol. 95, no. 2, p. 298.CrossRefGoogle Scholar
  14. 14.
    Kirsanov, D., Panchuk, V., Goydenko, A., Khaydukova, M., Semenov, V., and Legin, A., Spectrochim. Acta, part B, 2015, vol. 113, p. 126.CrossRefGoogle Scholar
  15. 15.
    Fazinic, S., Mandic, L., Kavcic, M., and Bozicevic, I., Spectrochim. Acta, part B, 2011, vol. 66, p. 461.CrossRefGoogle Scholar
  16. 16.
    Klines, C., Malherbe, J., and Claverie, F., Anal. Chim. Acta, 2013, vol. 773, p. 37.CrossRefGoogle Scholar
  17. 17.
    Rodionova, O.E. and Pomerantsev, A.L., Chemometrics in analytical chemistry. www.chemometrics.ru/ materials/articles/chemometrics_review.pdf. Cited July 20, 2016.Google Scholar
  18. 18.
    Pomerantsev, A.L., Classification, ch. 3.4 SIMCA. http://rcs.chemometrics.ru/Tutorials/classification.htm# Ch3.4. Cited April 21, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Panchuk
    • 1
    • 2
    • 3
  • N. O. Rabdano
    • 2
  • A. A. Goidenko
    • 2
  • A. V. Grebenyuk
    • 1
  • S. M. Irkaev
    • 1
  • V. G. Semenov
    • 1
    • 2
  1. 1.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of ChemistrySt. Petersburg State University, PetrodvoretsSt. PetersburgRussia
  3. 3.Faculty of PhotonicsSt. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations