Advertisement

Journal of Analytical Chemistry

, Volume 70, Issue 9, pp 1103–1110 | Cite as

Normal and second derivative spectrophotometric determination of niobium using solid phase extraction technique

  • Mostafa M. HamedEmail author
  • Refat F. Aglan
  • S. A. El-Reefy
Articles
  • 63 Downloads

Abstract

This paper describes a rapid method for niobium preconcentration, separation and determination by using solid phase extraction (SPE). The activity level of 94Nb is still very low in the environment. However, on account of its long half life, 94Nb would be one of the important isotopes in the near future for the safe management of radioactive waste. SPE method using freshly precipitated microcrystalline naphthalene as an adsorbent has been developed to separate and preconcentrate trace amount of niobium from aqueous samples for the detection by normal and second derivative spectrophotometry. The influence of some analytical parameters on the quantitative recoveries of the Nb(V) was investigated by batch technique. The complex extracted on naphthalene has an absorption maximum at 380 nm. The optimum pH range for the sorption is 7–8. The molar absorptivity is 1.40 × 104 L/(mol cm), the sensitivity being 0.0066 µg/cm2 of niobium. Derivative spectrophotometry in conjunction with extractive pre-concentration of Nb(V) with SPE is used for determining Nb(V) at concentration levels down to 25 ppb in initial sample. The foreign ions interference has been studied and the optimized conditions developed were utilized successfully for the trace determination of niobium in alloy steel, environmental and wastewater samples.

Keywords

niobium preconcentration determination normal and derivative spectrophotometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marczenko, Z. and Balcerzak, M., Separation, Preconcentration, and Spectrophotometry in Inorganic Analysis, Amsterdam: Elsevier, 2001.Google Scholar
  2. 2.
    Patel, K.S. and Das, M., Anal. Lett., 1991, vol. 24, p. 1273.CrossRefGoogle Scholar
  3. 3.
    Kim, K., Kim, H., Rho, G., and Sohn, D., J. Nucl. Sci. Technol., 2011, p. 24.Google Scholar
  4. 4.
    Remenec, B., Dulansk, S., Gardonova, V., and Matel, L., J. Radioanal. Nucl. Chem., 2013, vol. 295, p. 907.CrossRefGoogle Scholar
  5. 5.
    Yoshida, M., Numata, Y., Seki, R., and Ikeda, N., Radioisotopes, 1990, vol. 39 p, p. 547.CrossRefGoogle Scholar
  6. 6.
    Lobinski, R. and Marczenko, Z., Spectrochemical Trace Analysis for Metals and Metalloids, Amsterdam: Elsevier, 1998.Google Scholar
  7. 7.
    Welz, B., Atomic Absorption Spectrometry, Weinheim: VCH, 1985.Google Scholar
  8. 8.
    de Figueiredo, E.C., Luccas, P.O., and Arruda, M.Z., Anal. Lett., 2006, vol. 39, p. 543.CrossRefGoogle Scholar
  9. 9.
    Hamed, M.M., Ph. D. Thesis, Cairo, Egypt: Al-Azhar Univ., 2009.Google Scholar
  10. 10.
    Sanchez, M., Francisco, A., Jimenez, F., and Montelongo, F., Talanta, 1989, vol. 36, p. 831.CrossRefGoogle Scholar
  11. 11.
    Talsky, G., Derivative Spectrophotometry of First and Higher Orders, New York: VCH, 1994.CrossRefGoogle Scholar
  12. 12.
    El-Sayed, A.A. and Hamed, M.M., J. Radioanal. Nucl. Chem., 2006, vol. 270, p. 629.CrossRefGoogle Scholar
  13. 13.
    El-Sayed, A.A., Hamed, M.M., Hammad, H.A., and El-Reefy, S.A., Radiochim. Acta, 2007, vol. 95, p. 43.CrossRefGoogle Scholar
  14. 14.
    El-Sayed, A.A., Hamed, M.M., Awwad, N.S., and El-Reefy, S.A., Anal. Lett., 2008, vol. 41, p. 871.CrossRefGoogle Scholar
  15. 15.
    El-Sayed, A.A. and Hamed, M.M., and Eurasian J. Anal. Chem., 2009, vol. 4, p. 36.Google Scholar
  16. 16.
    El-Sayed, A.A., Hamed, M.M., and El-Reefy, S.A., J. Anal. Chem., 2010, vol. 65, p. 1113.CrossRefGoogle Scholar
  17. 17.
    El-Sayed, A.A., Hamed, M.M., and El-Reefy, S.A., Arab. J. Nucl. Sci. Appl., 2005, vol. 38 p, p. 54.Google Scholar
  18. 18.
    Sadeghi, S. and Sheikhzade, E., J. Hazard. Mater., 2009, vol. 163, p. 861.CrossRefGoogle Scholar
  19. 19.
    Hamed, M.M., Yakout, S.M., and Hassan, H.S., J. Radioanal. Nucl. Chem., 2013, vol. 295, p. 697.CrossRefGoogle Scholar
  20. 20.
    Behpour, M., Soltani, N., and Ghoreishi, S.M., Eur. J. Chem., 2010, vol. 4, p. 216.CrossRefGoogle Scholar
  21. 21.
    Puri, B.K., Jackson, K.W., and Katyal, M., Microchem. J., 1987, vol. 36, p. 135.CrossRefGoogle Scholar
  22. 22.
    Saeed, M.M., Hasany, S.M., and Ahmed, M., Talanta, 1999, vol. 50, p. 625.CrossRefGoogle Scholar
  23. 23.
    Hamed, M.M., Attallah, M.F., and Metwally, S.S., Radiochim. Acta, 2014, vol. 102, p. 1017.Google Scholar
  24. 24.
    Sanchez, M., Francisco, A., and Jimenez, F., Talanta, 1989, vol. 36, p. 831.CrossRefGoogle Scholar
  25. 25.
    Alonso, J., Garcia, M., and Sanz-Medel, A., Talanta, 1984, vol. 31, p. 361.CrossRefGoogle Scholar
  26. 26.
    Sanz-Medel, A., Camara Rica, C., and Perez-Bustamante, J.A., Anal. Chem., 1980, vol. 52, p. 1035.CrossRefGoogle Scholar
  27. 27.
    Nagiev, K.D., J. Anal. Chem., 2004, vol. 59, no. 10, p. 930.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Mostafa M. Hamed
    • 1
    Email author
  • Refat F. Aglan
    • 1
  • S. A. El-Reefy
    • 1
  1. 1.Analytical Chemistry and Environmental Control DepartmentHot Laboratories and Waste Management Center, Atomic Energy AuthorityCairoEgypt

Personalised recommendations