Journal of Analytical Chemistry

, Volume 70, Issue 7, pp 794–803 | Cite as

Ghezeljeh montmorillonite nanoclay as a natural adsorbent for solid phase extraction of copper ions from food samples

  • Majid Soleimani
  • Behrouz Rafiei
  • Zahra Hassanzadeh Siahpoosh


We demonstrate here the extraction and removal of Cu2+ ion from aqueous solutions by Ghezeljeh montmorillonite nanoclay as a new natural adsorbent material. A copper measurement is carried out by applying the solid phase extraction method in batch mode followed by atomic absorption spectroscopy. The clay is characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The results of XRD and FTIR of nanoclay confirm that montmorillonite is the dominant mineral phase. Based on SEM images of clay, it can be seen that the distance between the plates is nano. The limits of detection and quantification are 1 and 10 μg/L, respectively. The dynamic linear range is within the range of 10 to 50 μg/L. The adsorption capacity and preconcentration factor are 0.65 mg/g and 102, respectively. The experimental method has been successfully applied for the determination of Cu2+ ion in a variety of real water and food samples without interfering effect of various cations and anions.


adsorption Ghezeljeh montmorillonite nanoclay copper ion solid phase extraction food 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhattacharyya, K.G. and Gupta, S.S., Desalination, 2011, vol. 272, p. 66.CrossRefGoogle Scholar
  2. 2.
    Tuzen, M., Melek, E., and Soylak, M., J. Hazard. Mater., 2006, vol. 136, p. 597.CrossRefGoogle Scholar
  3. 3.
    Tuzen, M., Soylak, M., Citak, D., Ferreira, H.S., Korn, M.G., and Bezerra, M.A., J. Hazard. Mater., 2009, vol. 162, p. 1041.CrossRefGoogle Scholar
  4. 4.
    Fan, Z., Microchim. Acta, 2005, vol. 152, p. 29.CrossRefGoogle Scholar
  5. 5.
    da Silva, M.A.M., Frescura, V.L.A., Aguilera, F.J.N., and Curtius, A.J., J. Anal. Atom. Spectrom., 1998, vol. 13, p. 1369.CrossRefGoogle Scholar
  6. 6.
    Pavski, V., Corsini, A., and Landsberger, S., Talanta, 1989, vol. 36, p. 367.CrossRefGoogle Scholar
  7. 7.
    Igarashi, S., Ide, N., and Takagai, Y., Anal. Chim. Acta, 2000, vol. 424, p. 263.CrossRefGoogle Scholar
  8. 8.
    Skogvold, S.M., Mikkelsen, Ø., and Schrøder, K.H., Electroanalysis, 2005, vol. 17, p. 1938.CrossRefGoogle Scholar
  9. 9.
    Li, N.B., Duan, J.P., and Chen, G.N., Chin. J. Chem., 2004, vol. 22, p. 553.CrossRefGoogle Scholar
  10. 10.
    Karatepe, A.U., Soylak, M., and Elci, L., Anal. Lett., 2002, vol. 35, p. 1561.CrossRefGoogle Scholar
  11. 11.
    Soylak, M., Narin, I., Divrikli, U., Saracoglu, S., Elci, L., and Dogan, M., Anal. Lett., 2005, vol. 37, p. 767.CrossRefGoogle Scholar
  12. 12.
    Nabi, S., Alim, A., Islam, A., and Amjad, M., J. Sep. Sci., 2005, vol. 28, p. 2463.CrossRefGoogle Scholar
  13. 13.
    Bo, Y., Kun, X.S., and Lun, F.Z., Chem. Res. Chin. Univ., 2001, vol. 8, p. 008.Google Scholar
  14. 14.
    Tehrani, M., Rastegar, F., Parchehbaf, A., and Rezvani, Z., Chin. J. Chem., 2005, vol. 23, p. 1437.CrossRefGoogle Scholar
  15. 15.
    Taher, M., Mostafavi, A., Afzali, D., Mahani, F., and Mohadesi, A., Chem. Anal., 2005, vol. 50, p. 841.Google Scholar
  16. 16.
    Liang, P., Ding, Q., and Song, F., J. Sep. Sci., 2005, vol. 28, p. 2339.CrossRefGoogle Scholar
  17. 17.
    Tarley, C.R.T., Figueiredo, E.d.C., and Matos, G.D., Anal. Sci., 2005, vol. 21, p. 1337.CrossRefGoogle Scholar
  18. 18.
    Madrakian, T., Afkhami, A., Zolfigol, M.A., and Solgi, M., J. Hazard. Mater., 2006, vol. 128, p. 67.CrossRefGoogle Scholar
  19. 19.
    Saad, B., Chong, C.C., Ali, A.S.M., Bari, M.F., Rahman, I.A., Mohamad, N., and Saleh, M.I., Anal. Chim. Acta, 2006, vol. 555, p. 146.CrossRefGoogle Scholar
  20. 20.
    Kendüzler, E. and Türker, A.R., J. Sep. Sci., 2005, vol. 28, p. 2344.CrossRefGoogle Scholar
  21. 21.
    Adebowale, K.O., Unuabonah, I.E., and Olu-Owolabi, B.I., J. Hazard. Mater., 2006, vol. 134, p. 130.CrossRefGoogle Scholar
  22. 22.
    Akhlaghi, H., Hashemi, P., Boroumand, J., and Grafurian, H., Asian J. Chem., 2004, vol. 16, p. 1367.Google Scholar
  23. 23.
    Yan, L.-G., Shan, X.-Q., Wen, B., and Owens, G., J. Hazard. Mater., 2008, vol. 156, p. 499.CrossRefGoogle Scholar
  24. 24.
    Sari, A. and Soylak, M., J. Serb. Chem. Soc., 2007, vol. 72, p. 485.CrossRefGoogle Scholar
  25. 25.
    Kaya, A. and Fang, H.-Y., Can. Geotech. J., 2005, vol. 42, p. 632.CrossRefGoogle Scholar
  26. 26.
    Osmanlioglu, A.E., Waste Manage., 2002, vol. 22, p. 481.CrossRefGoogle Scholar
  27. 27.
    Krikorian, N. and Martin, D.F., J. Environ. Sci. Health, Part A, 2005, vol. 40, p. 601.CrossRefGoogle Scholar
  28. 28.
    Akcay, H. and Kurtulmus,, F., J. Radioanal. Nucl. Chem., 1995, vol. 200, p. 529.CrossRefGoogle Scholar
  29. 29.
    Dias, N.L., Polito, W.L., and Gushikem, Y., Talanta, 1995, vol. 42, p. 1031.CrossRefGoogle Scholar
  30. 30.
    Hardy, R.G. and Tucker, M.E., X-ray powder diffraction of sediments, Tucker, M.E., (Ed.), in: Techniques in Sedimentology, New York: Blackwell Scientific, 1988, 191.Google Scholar
  31. 31.
    Demirel, S., Tuzen, M., Saracoglu, S., and Soylak, M., J. Hazard. Mater., 2008, vol. 152, p. 1020.CrossRefGoogle Scholar
  32. 32.
    Tyagi, B., Chudasama, C.D., and Jasra, R.V., Spectrochim. Acta, Part A, 2006, vol. 64, p. 273.CrossRefGoogle Scholar
  33. 33.
    Eren, E. and Afsin, B., J. Hazard. Mater., 2008, vol. 151, p. 682.CrossRefGoogle Scholar
  34. 34.
    Steudel, A., Batenburg, L., Fischer, H., Weidler, P., and Emmerich, K., Appl. Clay Sci., 2009, vol. 44, p. 105.CrossRefGoogle Scholar
  35. 35.
    Eloussaief, M. and Benzina, M., J. Hazard. Mater., 2010, vol. 178, p. 753.CrossRefGoogle Scholar
  36. 36.
    Bhattacharyya, K.G. and Gupta, S.S., J. Colloid Interface Sci., 2007, vol. 310, p. 411.CrossRefGoogle Scholar
  37. 37.
    Bhattacharyya, K.G. and Gupta, S.S., Chem. Eng. J., 2008, vol. 136, p. 1.CrossRefGoogle Scholar
  38. 38.
    Duran, C., Senturk, H.B., Gundogdu, A., Bulut, V.N., Elci, L., Soylak, M., Tufekci, M., and Uygur, Y., Chin. J. Chem., 2007, vol. 25, p. 196.CrossRefGoogle Scholar
  39. 39.
    Pramanik, S., Dey, S., and Chattopadhyay, P., Anal. Chim. Acta, 2007, vol. 584, p. 469.CrossRefGoogle Scholar
  40. 40.
    Bakircioglu, Y., Bakircioglu, D., and Tokman, N., Anal. Chim. Acta, 2005, vol. 547, p. 26.CrossRefGoogle Scholar
  41. 41.
    Baytak, S. and Türker, A.R., Microchim. Acta, 2005, vol. 149, p. 109.CrossRefGoogle Scholar
  42. 42.
    Kiran, K., Suresh Kumar, K., Suvardhan, K., Janardhanam, K., and Chiranjeevi, P., J. Hazard. Mater., 2007, vol. 147, p. 15.CrossRefGoogle Scholar
  43. 43.
    Tuzen, M. and Soylak, M., Anal. Chim. Acta, 2004, vol. 504, p. 325.CrossRefGoogle Scholar
  44. 44.
    Tuzen, M., Soylak, M., and Elci, L., Anal. Chim. Acta, 2005, vol. 548, p. 101.CrossRefGoogle Scholar
  45. 45.
    Tuzen, M., Saygi, K.O., and Soylak, M., J. Hazard. Mater., 2008, vol. 152, p. 632.CrossRefGoogle Scholar
  46. 46.
    Bermejo-Barrera, P., Nancy, M.A., Cristina, D.L., and Adela, B.B., Microchim. Acta, 2003, vol. 142, p. 101.CrossRefGoogle Scholar
  47. 47.
    Subrahmanyam, P., Krishna Priya, B., Jayaraj, B., and Chiranjeevi, P., Toxicol. Environ. Chem., 2008, vol. 90, p. 97.CrossRefGoogle Scholar
  48. 48.
    Cespón-Romero, R. and Yebra-Biurrun, M., Anal. Chim. Acta, 2008, vol. 609, p. 184.CrossRefGoogle Scholar
  49. 49.
    Ghanemi, K., Nikpour, Y., Omidvar, O., and Maryamabadi, A., Talanta, 2011, vol. 85, p. 763.CrossRefGoogle Scholar
  50. 50.
    Karimipour, G., Ghaedi, M., Sahraei, R., Daneshfar, A., and Biyareh, M.N., Biol. Trace Elem. Res., 2012, vol. 145, p. 109.CrossRefGoogle Scholar
  51. 51.
    Bulut, V.N., Gundogdu, A., Duran, C., Senturk, H.B., Soylak, M., Elci, L., and Tufekci, M., J. Hazard. Mater., 2007, vol. 146, p. 155.CrossRefGoogle Scholar
  52. 52.
    Narin, I., Soylak, M., Elci, L., and Dogan, M., Anal. Lett., 2001, vol. 34, p. 1935.CrossRefGoogle Scholar
  53. 53.
    Vieira, E.G., Soares, I.V., da Silva, N.C., Perujo, S.D., Bastos, A.C., Garcia, E.F., Ferreira, T.T., Fraceto, L.F., and Rosa, A.H., J. Hazard. Mater., 2012, vols. 237–238, p. 215.CrossRefGoogle Scholar
  54. 54.
    He, Q., Hu, Z., Jiang, Y., Chang, X., Tu, Z., and Zhang, L., J. Hazard. Mater., 2010, vol. 175, p. 710.CrossRefGoogle Scholar
  55. 55.
    Cui, Y., Chang, X., Zhu, X., Luo, H., Hu, Z., Zou, X., and He, Q., Microchem. J., 2007, vol. 87, p. 20.CrossRefGoogle Scholar
  56. 56.
    Xie, F., Lin, X., Wu, X., and Xie, Z., Talanta, 2008, vol. 74, p. 836.CrossRefGoogle Scholar
  57. 57.
    Puzio, B., Mikula, B., and Feist, B., J. Anal. Chem., 2009, vol. 64,no. 8, p. 786.CrossRefGoogle Scholar
  58. 58.
    Hazer, O., Kartal, Ş., and Tokaloǧlu, S., J. Anal. Chem., 2009, vol. 64, no. 6, p. 609.CrossRefGoogle Scholar
  59. 59.
    Şeyhan, S., Çolak, M., Merdivan, M., and Demirel, N., Anal. Chim. Acta, 2007, vol. 584, p. 462.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Majid Soleimani
    • 1
  • Behrouz Rafiei
    • 2
  • Zahra Hassanzadeh Siahpoosh
    • 1
  1. 1.Department of ChemistryImam Khomeini International University (IKIU)QazvinIran
  2. 2.Department of ScienceBu-ALi Sina University (BASU)HamedanIran

Personalised recommendations