Advertisement

Journal of Analytical Chemistry

, Volume 70, Issue 7, pp 825–830 | Cite as

Detection of halogenated organics by their inhibitory action in a catalytic reaction between dimethyl acetylenedicarboxylate and 2-methyl-4-nitroaniline

  • Isaac Afreh
  • Evan K. Wujcik
  • Nathaniel Blasdel
  • Benjamin Sauer
  • Susan Kaya
  • Stephen Duirk
  • Chelsea N. Monty
Articles

Abstract

The purpose of this paper is to report on the detection of toxic halogenated organic compounds in water using their inhibitory action on a pyridine-catalyzed reaction between dimethyl acetylenedicarboxylate (DMAD) and 2-methyl-4-nitroaniline (MNA). Previous work has shown that similar techniques can successfully lower the detection limit of sulfides and arsines in water samples, compared to their standard photometric detection methods. This paper highlights the optimization, selectivity, and sensitivity studies of the proposed sensing scheme. Optimization shows that the pyridine-catalyzed reaction is more favorable at 4 mM DMAD and 8 mM MNA. It was also determined that the inhibitory effect of halogenated organic compounds is more pronounced when carried out at 60°C. Using optimized reaction conditions, the limit of quantification for the four regulated trihalomethanes (THMs) was approximately 80 ppm. In addition, the sensing method is selective to THMs and a few other halogenated organics. These promising results demonstrate the further success of this technique for sensitive, selective detection, and future work will be carried out to incorporate the technique in sensing applications for THMs in drinking water.

Keywords

trihalomethanes drinking water Fujiwara reaction electrochemical detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monty, C.N., Londono, N.J., and Masel, R.I., Anal. Chem., 2009, vol. 81, p. 6416.CrossRefGoogle Scholar
  2. 2.
    Monty, C.N., Londono, N.J., and Masel, R.I., Chemosphere, 2011, vol. 82, p. 1644.CrossRefGoogle Scholar
  3. 3.
    Crouch, S.R., Cullen, T.F., Scheeline, A., and Kirkor, E.S., Anal. Chem., 1998, vol. 70, p. 53R.CrossRefGoogle Scholar
  4. 4.
    Crouch, S.R., Scheeline, A., and Kirkor, E.S., Anal. Chem., 2000, vol. 72, p. 53R.CrossRefGoogle Scholar
  5. 5.
    Mottola, H.A. and Perez-Bbendito, D., Anal. Chem., 1992, vol. 64, p. R407.CrossRefGoogle Scholar
  6. 6.
    Mottola, H.A. and Perez-Bbendito, D., Anal. Chem., 1996, vol. 68, p. R257.CrossRefGoogle Scholar
  7. 7.
    Drinking Water Contaminants, US EPA. http://water.epa.gov/drink/contaminants/index.cfm. Accessed April 12, 2014.
  8. 8.
    Roccaro, P., Vagliasindi, F.G.A., and Korshin, G.V., Water Sci. Technol., 2011, vol. 63, p. 40.CrossRefGoogle Scholar
  9. 9.
    Roccaro, P. and Vagliasindi, F.G.A., Water Res., 2011, vol. 43, p. 744.CrossRefGoogle Scholar
  10. 10.
    Plewa, M.J., Muellner, M.G., Richardson, S.D., Fasanot, F., Buettner, K.M., Woo, Y.T., McKague, A.B., and Wagner, E.D., Environ. Sci. Technol., 2008, vol. 42, p. 955.CrossRefGoogle Scholar
  11. 11.
    Chowdhury, S., Rodriguez, M.J., Sadiq, R., and Serodes, J., Water Res., 2011, vol. 45, p. 337.CrossRefGoogle Scholar
  12. 12.
    Fujiwara, K., Sitz. Nat. Ges. Rostock, 1917, vol. 6, p. 33.Google Scholar
  13. 13.
    Ross, J., J. Biol. Chem., 1923, vol. 58, p. 641.Google Scholar
  14. 14.
    William, C., J. Biol. Chem., 1926, vol. 71, p. 173.Google Scholar
  15. 15.
    Lugg, G.A., Anal. Chem., 1966, vol. 38, p. 1532.CrossRefGoogle Scholar
  16. 16.
    Uno, T., Okumura, K., and Kuroda, Y., J. Org. Chem., 1981, vol. 46, p. 3175.CrossRefGoogle Scholar
  17. 17.
    Yavari, I., Piltan, M., and Moradi, L., Tetrahedron, 2009, vol. 65, p. 2067.CrossRefGoogle Scholar
  18. 18.
    Reith, J.F., van Ditmarschde, W.C., and de Ruiter, T., Analyst, 1974, vol. 99, p. 652.CrossRefGoogle Scholar
  19. 19.
    Rodman, D.L., Carrington, N.A., Qiu, H., Goswami, K., and Xue, Z.-L., Anal. Chim. Acta, 2005, vol. 548, p. 143.CrossRefGoogle Scholar
  20. 20.
    Uno, T., Okumura, K., and Kuroda, Y., Chem. Pharm. Bull., 1982, vol. 30, p. 1876.CrossRefGoogle Scholar
  21. 21.
    Uno, T., Okumura, K., and Kuroda, Y., J. Org. Chem., 1981, vol. 46, p. 3175.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Isaac Afreh
    • 1
  • Evan K. Wujcik
    • 1
  • Nathaniel Blasdel
    • 1
  • Benjamin Sauer
    • 1
  • Susan Kaya
    • 1
  • Stephen Duirk
    • 2
  • Chelsea N. Monty
    • 1
  1. 1.Monty Research Laboratory, Department of Chemical and Biomolecular EngineeringThe University of AkronAkronUSA
  2. 2.Duirk Research Laboratory, Department of Civil EngineeringThe University of AkronAkronUSA

Personalised recommendations