Journal of Analytical Chemistry

, Volume 70, Issue 3, pp 277–286 | Cite as

Molecularly imprinted inorganic supports in high-performance liquid chromatography and solid-phase extraction



Selective preconcentration of analytes or groups of similar analytes is often useful in the analysis of biological and environmental samples and other samples of complex composition. The problem of the selective recognition of analytes can be solved using the method of molecular imprinting, which is gaining wide acceptance as an alternative to the use of biological recognition agents, for example antibodies, and favors overcoming the shortcomings inherent to the last named ones. The use of molecularly imprinted materials as adsorbents for solid-phase extraction and high-performance liquid chromatography ensures an increase in the selectivity of analyte determination in complex matrixes. This paper is a review of methods for the preparation of molecular imprints on the surface of inorganic matrixes, including nanostructured ones, and of the applications of these materials to chemical analysis.


molecular imprinting inorganic adsorbents molecular recognition solid-phase extraction high-performance liquid chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molecular Imprinting of Polymers, Piletsky, S. and Turner, A., Eds., Georgetown, TX, USA: Landes Bioscience, 2006.Google Scholar
  2. 2.
    Gendrikson, O.D., Zherdev, A.V., and Dzantiev, B.B., Usp. biol. khim., 2006, vol. 46, p. 149.Google Scholar
  3. 3.
    Cheong, W.J., Yang, S.H., and Ali, F., J. Sep. Sci., 2013, vol. 36, p. 609.CrossRefGoogle Scholar
  4. 4.
    Chen, L., Xu, S., and Li, J., Chem. Soc. Rev., 2011, vol. 40, p. 2922.CrossRefGoogle Scholar
  5. 5.
    Andersson, L., J. Chromatogr. B: Biomed. Sci. Appl., 200, vol. 745, p. 3.Google Scholar
  6. 6.
    Fairhurst, R., Chassaing, C., Venn, R., and Mayes, A., Biosens. Bioelectron., 2004, vol. 20, p. 1098.CrossRefGoogle Scholar
  7. 7.
    Kandimala, V. and Ju, H., Anal. Bioanal. Chem., 2004, vol. 380, p. 587.CrossRefGoogle Scholar
  8. 8.
    Muldoon, M. and Stanker, L., Anal. Chem., 1997, vol. 69, p. 803.CrossRefGoogle Scholar
  9. 9.
    Bossi, A., Bonini, F., Turner, A., and Piletsky, S., Biosens. Bioelectron., 2007, vol. 22, p. 1131.CrossRefGoogle Scholar
  10. 10.
    Wulff, G., Vesper, W., Grobe-Einsler, R., and Sarhan, A., Makromol. Chem., 1977, vol. 178, p. 2799.CrossRefGoogle Scholar
  11. 11.
    Tamayo, F. and Martin-Esteban, A., J. Chromatogr. A, 2005, vol. 1098, p. 116.CrossRefGoogle Scholar
  12. 12.
    Kim, T., Ki, C., Cho, H., Chang, T., and Chang, J., Macromolecules, 2005, vol. 38, p. 6423.CrossRefGoogle Scholar
  13. 13.
    Tan, C. and Tong, Y., Anal. Bioanal. Chem., 2007, vol. 389, p. 369.CrossRefGoogle Scholar
  14. 14.
    Alexander, C., Andersson, H., Andersson, L., Ansell, R., Kirsch, N., Nicholls, I., O’Mahony, J., and Whitcombe, M., J. Mol. Recognit., 2006, vol. 19, p. 106.CrossRefGoogle Scholar
  15. 15.
    Polyakov, M.V., Zh. Fiz. Khim., 1931, vol. 2, p. 799.Google Scholar
  16. 16.
    Curti, R. and Colombo, U., Chim. Ind., 1951, vol. 23, p. 103.Google Scholar
  17. 17.
    Curti, R. and Colombo, U., J. Am. Chem. Soc., 1952, vol. 74, p. 3961.CrossRefGoogle Scholar
  18. 18.
    Klabunovskii, E.I., Agronomov, A.E., Volkova, L.M., and Balandin, A.A., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1963, p. 228.Google Scholar
  19. 19.
    Sagiv, J., Isr. J. Chem., 1979, vol. 18, p. 346.CrossRefGoogle Scholar
  20. 20.
    Sagiv, J., J. Am. Chem. Soc., 1980, vol. 102, p. 92.CrossRefGoogle Scholar
  21. 21.
    Kempe, M., Glad, M., and Mosbach, K., J. Mol. Recognit., 1995, vol. 8, p. 35.CrossRefGoogle Scholar
  22. 22.
    Norrlow, O., Glad, M., and Mosbach, K., J. Chromatogr., 1984, vol. 299, p. 29.CrossRefGoogle Scholar
  23. 23.
    Hirayama, K., Sakai, Y., and Kameoka, K., J. Appl. Polym. Sci., 2001, vol. 81, p. 3378.CrossRefGoogle Scholar
  24. 24.
    Plunkett, S.D. and Arnold, F.H., J. Chromatogr. A, 1995, vol. 708, p. 19.CrossRefGoogle Scholar
  25. 25.
    Gao, D., Zhang, Z., Wu, M., Xie, C., Guan, G., and Wang, D., J. Am. Chem. Soc., 2007, vol. 129, p. 7859.CrossRefGoogle Scholar
  26. 26.
    Sulitzky, C., Ruckert, B., Hall, A.J., Lanza, F., Unger, K., and Sellergren, B., Macromolecules, 2002, vol. 35, p. 79.CrossRefGoogle Scholar
  27. 27.
    Tamayo, F., Titirici, M., Martin-Esteban, A., and Sellergren, B., Anal. Chim. Acta, 2005, vol. 542, p. 38.CrossRefGoogle Scholar
  28. 28.
    Fairhurst, R., Chassaing, C., Venn, R.F., and Mayes, A.G., Biosens. Bioelectron., 2004, vol. 20, p. 1098.CrossRefGoogle Scholar
  29. 29.
    Ruckert, B., Hall, A.J., and Sellergren, B., J. Mater. Chem., 2002, vol. 12, p. 2275.CrossRefGoogle Scholar
  30. 30.
    Sellergren, B., Ruckert, B., and Hall, A.J., Adv. Mater., 2002, vol. 14, p. 1204.CrossRefGoogle Scholar
  31. 31.
    Su, S., Zhang, M., Li, B., Zhang, H., and Dong, X., Talanta, 2008, vol. 76, p. 1141.CrossRefGoogle Scholar
  32. 32.
    Barahona, F., Turiel, E., Cormack, P., and Martin-Esteban, A., J. Polym. Sci., Part A, 2010, vol. 48, p. 1058.CrossRefGoogle Scholar
  33. 33.
    Yilmaz, E., Haupt, K., and Mosbach, K., Angew. Chem., Int. Ed. Engl., 2000, vol. 39, p. 2115.CrossRefGoogle Scholar
  34. 34.
    Yilmaz, E., Ramstrom, O., Moller, P., Sanchez, D., and Mosbach, K., J. Mater. Chem., 2002, vol. 12, p. 1577.CrossRefGoogle Scholar
  35. 35.
    Titirici, M. and Sellergren, B., Anal. Bioanal. Chem., 2004, vol. 378, p. 1913.CrossRefGoogle Scholar
  36. 36.
    Rachkov, A. and Minoura, N., Biochim. Biophys. Acta, 2001, vol. 1544, p. 255.CrossRefGoogle Scholar
  37. 37.
    Kim, T.H., Ki, C.D., Cho, H., Chang, T., and Chang, J.Y., Macromolecules, 2005, vol. 38, p. 6423.CrossRefGoogle Scholar
  38. 38.
    Ki, C.D., Oh, C., Oh, S-G., and Chang, J.Y., J. Am. Chem. Soc., 2002, vol. 124, p. 14838.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Zhang, Y., Qin, Z., and Ma, Z., Front. Chem. China, 2008, vol. 3, p. 320.CrossRefGoogle Scholar
  40. 40.
    Theodoridis, G., Lasakova, M., Skerikova, V., Tegou, A., Giantsiou, N., and Jandera, P., J. Sep. Sci., 2006, vol. 29, p. 2310.CrossRefGoogle Scholar
  41. 41.
    Qiao, F., Sun, H., Yan, H., and Row, K.H., Chromatographia, 2006, vol. 64, nos. 11–12, p. 625.CrossRefGoogle Scholar
  42. 42.
    Bjarnason, B., Chimuka, L., and Ramstron, O., Anal. Chem., 1999, vol. 71, p. 2152.CrossRefGoogle Scholar
  43. 43.
    Moein, M.M., Javanbakht, M., and Akbariadergani, B., Talanta, 2014, vol. 121, p. 30.CrossRefGoogle Scholar
  44. 44.
    Moein, M.M., Javanbakht, M., and Akbariadergani, B., J. Chromatogr. B: Biomed. Sci. Appl., 2011, vol. 879, p. 777.CrossRefGoogle Scholar
  45. 45.
    Mullett, W. and Lai, E., Anal. Chem., 1998, vol. 70, p. 3636.CrossRefGoogle Scholar
  46. 46.
    Schreiber-Deturmeny, E., J. Cromarogr. B: Biomed Sci. Appl., 1996, vol. 677, p. 305.Google Scholar
  47. 47.
    Zhou, S.N., Lai, E.P.C., and Miller, J.D., Anal. Bioanal. Chem., 2004, vol. 378, p. 1903.CrossRefGoogle Scholar
  48. 48.
    Andersson, L.I., Abdel-Rehim, M., Niklasson, L., Schweitz, L., and Nilsson, S., Chromatographia, 2002, vol. 55, p. 65.CrossRefGoogle Scholar
  49. 49.
    Matsui, J., Fujiwara, K., and Takeuchi, T., Anal. Chem., 2000, vol. 72, p. 1810.CrossRefGoogle Scholar
  50. 50.
    Matsui, J., Fujiwara, K., Ugata, S., and Takeuchi, T., J. Chromatogr. A, 2000, vol. 889, p. 25.CrossRefGoogle Scholar
  51. 51.
    Mullett, W.M., Dirie, M.F., Lai, E.P.C., Guo, H., and He, X., Anal. Chim. Acta, 2000, vol. 414, p. 123.CrossRefGoogle Scholar
  52. 52.
    Li, J., Zhang, X., Tong, H., Xu, Y., and Liu, S., Talanta, 2013, vol. 117, p. 281.CrossRefGoogle Scholar
  53. 53.
    Kawaguchi, M., Hayatsu, Y., Nakata, H., Ishii, Y., Ito, R., Saito, K., and Nakazawa, H., Anal. Chim. Acta, 2005, vol. 539, p. 83.CrossRefGoogle Scholar
  54. 54.
    Men, H-F., Liu, H-Q., Zhang, Z-L., Zhang, J.H., Zhai, Y.-Y., and Li, L., Environ. Sci. Pollut. Res., 2012, vol. 19, p. 2271.CrossRefGoogle Scholar
  55. 55.
    Jin, G., Li, W., Yu, S., Peng, Y., and Kong, J., Analyst, 2008, vol. 133, p. 1367.CrossRefGoogle Scholar
  56. 56.
    Huang, W., Yang, X., Zhao, S., Zhang, M., Hu, X., Wang, J., and Zhao, H., Analyst, 2013, vol. 21, p. 6653.CrossRefGoogle Scholar
  57. 57.
    Khatiri, R., Revhani, A., Mortazavi, S.Z., and Hossainalipour, M., Proc. 4th Int. Conf. on Nanostructures (ICNS4), Kish Island, Iran, 2012.Google Scholar
  58. 58.
    Lu, A.-H., Salabas, E.L., and Schuth, F., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 1222.CrossRefGoogle Scholar
  59. 59.
    Liu, Y., Huang, Y., Liu, J., Wang, W., Liu, G., and Zhao, R., J. Chromatogr. A, 2012, vol. 1246, p. 15.CrossRefGoogle Scholar
  60. 60.
    Zhang, Y., Liu, R., Hu, Y., and Li, G., Anal. Chem., 2009, vol. 81, p. 967.CrossRefGoogle Scholar
  61. 61.
    Lin, Z., Cheng, W., Li, Y., Liu, Z., Chen, X., and Huang, C., Anal. Chim. Acta, 2012, vol. 720, p. 71.CrossRefGoogle Scholar
  62. 62.
    Chen, A., Zeng, G., Chen, G., Hu, X., Yan, M., Guan, S., Shang, C., Lu, L., Zou, Z., and Xie, G., Chem. Eng. Sci., 2012, vol. 191, p. 85.CrossRefGoogle Scholar
  63. 63.
    Xu, C., Shen, X., and Ye, L., J. Mater. Chem., 2012, vol. 22, p. 7427.CrossRefGoogle Scholar
  64. 64.
    Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., and Li, M., J. Biomed. Mater. Res., Part A, 2007, vol. 80, p. 333.CrossRefGoogle Scholar
  65. 65.
    Feng, B., Hong, R.Y., Wang, L.S., Guo, L., Li, H.Z., Ding, J., Zheng, Y., and Wei, D.G., Coll. Surf. A, 2008, vol. 328, p. 52.CrossRefGoogle Scholar
  66. 66.
    Ballesteros-Gomez, A. and Rubio, S., Anal. Chem., 2009, vol. 81, p. 9012.CrossRefGoogle Scholar
  67. 67.
    Lee, S.-Y. and Harris, M.T., J. Colloid Interface Sci., 2006, vol. 293, p. 401.CrossRefGoogle Scholar
  68. 68.
    Kubrakova, I.V., Koshcheeva, I.Ya., Pryazhnikov, D.V., Martynov, L.Yu., Kiseleva, M.S., and Tyutyunnik, O.A., J. Anal. Chem., 2014, vol. 69, p. 336.CrossRefGoogle Scholar
  69. 69.
    Khoury, J.M.El., Caruntu, D., O’Connor, C.J., Jeong, K.-U., Cheng, S.Z.D., and Hu, J., J. Nanopart. Res., 2007, vol. 9, p. 959.CrossRefGoogle Scholar
  70. 70.
    Liao, M.-H. and Chen, D.-H., J. Mater. Chem., 2002, vol. 12, p. 3654.CrossRefGoogle Scholar
  71. 71.
    Chang, Y.-C. and Chen, D.-H., J. Colloid Interface Sci., 2005, vol. 283, p. 446.CrossRefGoogle Scholar
  72. 72.
    Tatemichi, M., Sakamoto, M., Mizuhata, M., Deki, S., and Takeuchi, T., J. Am. Chem. Soc., 2007, vol. 129, p. 10906.CrossRefGoogle Scholar
  73. 73.
    Inoue, J., Ooya, T., and Takeuchi, T., Soft Matter, 2011, vol. 7, p. 9681.CrossRefGoogle Scholar
  74. 74.
    Shen, X., Zhu, L., Liu, G., Yu, H., and Tang, H., Environ. Sci., 2008, vol. 42, p. 1687.CrossRefGoogle Scholar
  75. 75.
    Yang, D.-H., Takahara, N., Lee, S.-W., and Kunitake, T., Sens. Actuators, B, 2008, vol. 130, p. 379.CrossRefGoogle Scholar
  76. 76.
    Lahav, M., Kharitonov, A.B., Katz, O., Kunitake, T., and Willner, I., Anal. Chem., 2001, vol. 73, p. 720.CrossRefGoogle Scholar
  77. 77.
    Lee, S.-W., Ichinose, I., and Kunitake, T., Langmuir, 1998, vol. 14, p. 2857.CrossRefGoogle Scholar
  78. 78.
    Kunitake, T. and Lee, S.-W., Anal. Chim. Acta, 2004, vol. 504, p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations