Journal of Analytical Chemistry

, Volume 68, Issue 14, pp 1205–1211 | Cite as

Elimination of water interference in pulsed glow discharge time-of-flight mass spectrometry

  • A. A. Ganeev
  • A. R. Gubal
  • S. V. Potapov
  • S. E. Pogarev
  • S. E. Sholupov
  • K. N. Uskov
  • I. S. Ivanov
Articles

Abstract

The presence of water in the discharge cell is a serious problem in glow discharge mass spectrometry. Even very small quantities of water can make considerable changes in the composition and electrical parameters of the plasma, which lead to a decrease in the signal intensity and the appearance of various cluster components. This results in a very complicated mass spectrum and significantly deteriorates the analytical performance of the method. Different approaches to solving the this problem are discussed in the paper. A multiple position interface that allows analyzing 6–10 samples without decapsulation of the discharge cell is presented in this work. It is also shown that the use of a tantalum auxiliary cathode ensures a several-order depression of the interfering components (OH+, OH2+, OH3+, 12C1H2+, 16O+, 12C1H3+) because of its getter behavior. The simultaneous application of all proposed approaches ensures solving the problem of interferences in the combined hollow cathode with pulsed glow discharge to the great extent.

Keywords

time-of-flight mass-spectrometry pulsed glow discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hang, W., Walden, W.O., and Harrison, W.W., Anal. Chem., 1996, vol. 68, no. 7, p. 1148.CrossRefGoogle Scholar
  2. 2.
    Hang, W. and Harrison, W.W., Anal. Chem., 1997, vol. 69, no. 24, p. 4957.CrossRefGoogle Scholar
  3. 3.
    Yan, X., Lin, Y., Huang, R., Hang, W., and Harrison, W.W., J. Anal. Atom. Spectrom., 2010, vol. 25, no. 4, p. 534.CrossRefGoogle Scholar
  4. 4.
    Hang, W., Yan, X., Wayne, D.M., Olivares, J.A., Harrison, W.W., and Majidi, V., Anal. Chem., 1999, vol. 71, no. 15, p. 3231.CrossRefGoogle Scholar
  5. 5.
    Ohorodnik, S.K. and Harrison, W.W., Anal. Chem., 1993, vol. 65, no. 13, p. 2542.CrossRefGoogle Scholar
  6. 6.
    Lobo, L., Bordel, N., Pereiro, R., Tempez, A., Chapon, P., and Sanz-Medel, A., J. Anal. Atom. Spectrom., 2011, vol. 26, no. 7, p. 798.CrossRefGoogle Scholar
  7. 7.
    Mei, Y. and Harrison, W.W., Spectrochim. Acta B, 1991, vol. 46, no. 2, p. 175.CrossRefGoogle Scholar
  8. 8.
    Betti, M., J. Anal. Atom. Spectrom., 1996, vol. 11, no. 9, p. 855.CrossRefGoogle Scholar
  9. 9.
    Betti, M. and Aldave de las Heras, L., Spectrochim. Acta B, 2004, vol. 59, no. 9, p. 1359.CrossRefGoogle Scholar
  10. 10.
    Ganeev, A.A., Kuz’menkov, M.A., Lyubimtsev, V.A., Potapov, S.V., Drobyshev, A.I., Potemin, S.S., and Voronov, M.V., J. Anal. Chem., 2007, vol. 62, no. 5, p. 444.CrossRefGoogle Scholar
  11. 11.
    Ganeev, A.A., Gubal’, A.R., Potapov, S.V., Tyukal’tsev, R.V., and Zlotorovich, A., Mass-spektrometria, 2009, vol. 6, no. 1, p. 67.Google Scholar
  12. 12.
    Voronov, M. and Ganeev, A., Spectrochim. Acta B, 2009, vol. 64, no. 5, p. 416.CrossRefGoogle Scholar
  13. 13.
    Ganeev, A.A., Gubal’, A.R., Potapov, S.V., and Uskov, K.N., Mass-spektrometria, 2012, vol. 9, no. 1, p. 23.Google Scholar
  14. 14.
    Ganeev, A.A., Gubal’, A.R., Potapov, S.V., and Uskov, K.N., Izv. Akad. Nauk, Ser. Khim., 2012, no. 4, p. 748.Google Scholar
  15. 15.
    Ganeev, A.A., Potapov, S.V., Uskov, K.N., and Krasheninnikov, A.A., RF Invention Registry no. 2012103761/07(005620), 2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Ganeev
    • 1
  • A. R. Gubal
    • 1
  • S. V. Potapov
    • 2
  • S. E. Pogarev
    • 1
  • S. E. Sholupov
    • 1
  • K. N. Uskov
    • 1
  • I. S. Ivanov
    • 1
  1. 1.Faculty of ChemistrySt. Petersburg State UniversityPetergof, St. PetersburgRussia
  2. 2.Lumass Ltd.St. PetersburgRussia

Personalised recommendations