Journal of Analytical Chemistry

, Volume 68, Issue 3, pp 223–227 | Cite as

Determination of iron in milk infant formulas by using Chromazurol S in the presence of dodecyltrimethylammonium bromide and Brij 35

  • K. Pytlakowska


Two sensitive methods for spectrophotometric determination of iron(III) in milk infant formulas, based on the formation of coloured complexes of Fe(III) with Chromazurol S (CAS) in the presence of dodecyltrimethylammonium bromide (DTA) alone and DTA with Brij 35 have been developed. Optimum pH and the concentrations of CAS, DTA, and Brij 35 ensuring maximum absorbance have been determined. For the Fe-CAS-DTA system, the molar absorptivity is 1.05 × 105 L/(mol cm) at 685 nm; for Fe-CAS-DTA-Brij 35 it is 1.94 × 105 L/(mol cm) at 636 nm. Beer’s law was obeyed for iron concentration in the range of 0.04–0.40 μg/mL for the complex Fe-CAS-DTA and 0.08−0.40 μg/mL for Fe-CAS-DTA-Brij 35. The influence of several interfering ions has been discussed. The stoichiometry of the complexes was established by applying Job’s method. The method, basing on the Fe-CAS-DTA system, has been applied to the determination of iron in milk samples. To evaluate the accuracy of the elaborated method, the determined content of Fe was compared to the declared value as well as to the result obtained by the reference ICP-OES method.


spectrophotometric determination iron in milk Chromazurol S surfactants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kabata-Pendias, A. and Pendias, H., Biogeochemistry of Trace Elements, Warsaw: PWN, 1993.Google Scholar
  2. 2.
    Silvestre, M.D., Lagarda, M.J., Farré, R., Martínez-Costa, C., and Brines, J., Food Chem., 2000, vol. 68, p. 95.CrossRefGoogle Scholar
  3. 3.
    Akl, M.A., Microchem. J., 2003, vol. 75, p. 199.CrossRefGoogle Scholar
  4. 4.
    Yebra, M.C., Moreno-Cid, A., Cespón, R., and Cancela, S., Talanta, 2004, vol. 62, p. 403.CrossRefGoogle Scholar
  5. 5.
    Shakerian, F., Dadfarnia, S., Shabani, A.M.H., and Rohani, M., Talanta, 2008, vol. 77, p. 551.CrossRefGoogle Scholar
  6. 6.
    Tuzen, M. and Soylak, M., Anal. Chim. Acta, 2004, vol. 504, p. 325.CrossRefGoogle Scholar
  7. 7.
    Aleixo, P.C. and Nóbrega, J.A., Food Chem., 2003, vol. 83, p. 457.CrossRefGoogle Scholar
  8. 8.
    Chávez-Servín, J.L., Castellote, A.I., Rivero, M., and López-Sabater, M.C., Food Chem., 2008, vol. 107, p. 1187.CrossRefGoogle Scholar
  9. 9.
    Freschi, G.P.G., Freschi, C.D., and Gomes Neto, J.A., Microchim. Acta, 2008, vol. 161, p. 129.CrossRefGoogle Scholar
  10. 10.
    Chen, K.-L. and Jiang, S.-J., Anal. Chim. Acta, 2002, vol. 470, no. 2, p. 223.CrossRefGoogle Scholar
  11. 11.
    Kira, C.S., Maio, F.D., and Maihara, V.A., J. AOAC Inter., 2004, vol. 87, p. 151.Google Scholar
  12. 12.
    Jarosz, M. and Marczenko, Z., Chem. Anal. (Warsaw), 1992, vol. 37, p. 63.Google Scholar
  13. 13.
    Hayashi, K., Sasaki, Y., Tagashira, S., and Kosaka, E., Anal. Chem., 1986, vol. 58, p. 1444.CrossRefGoogle Scholar
  14. 14.
    Langmyhr, F.J. and Klausen, K.S., Anal. Chim. Acta, 1963, vol. 29, p. 149.CrossRefGoogle Scholar
  15. 15.
    Gotzmannová, D. and Kubá, V., Coll. Czech. Chem. Comm., 1980, vol. 45, p. 1793.Google Scholar
  16. 16.
    Kubáň, V. and Gotzmannová, D., Coll. Czech. Chem. Comm., 1980, vol. 45, p. 2656.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. Pytlakowska
    • 1
  1. 1.Department of Analytical Chemistry, Institute of ChemistryUniversity of SilesiaKatowicePoland

Personalised recommendations