Advertisement

Journal of Analytical Chemistry

, Volume 67, Issue 10, pp 842–850 | Cite as

Quantification of nanodiamonds in aqueous solutions by spectrophotometry and thermal lens spectrometry

  • D. S. Volkov
  • P. I. Semenyuk
  • M. V. Korobov
  • M. A. Proskurnin
Articles

Abstract

Spectrophotometry and thermal lens spectrometry were used to study solutions of several commercial detonation nanodiamonds. It was found that the absorption spectra of solutions of all studied nanodiamond samples obey the Bouger-Lambert-Beer law, which ensures the precise determination of the total mass concentration of unknown nanodiamond solutions using a calibration plot. It was shown that the absorption spectra of nanodiamond solutions exhibit both absorption and scattering components, both significantly affecting signal formation. Conditions were proposed for the spectrophotometric determination of nanodiamonds at 250 nm (l = 1.0 cm). The detection limits were from 60 ng/mL to 2 μg/mL, depending on the nanodiamond type. Limits of detection of SDND nanodiamonds by spectrophotometry and thermal lens spectrometry were calculated for identical conditions of sample preparation and measurements (488 nm, l = 1.0 cm). These were 10 and 0.6 μg/mL for spectrophotometry and thermal lens spectrometry, respectively (power of excitation radiation 150 mW).

Keywords

detonation nanodiamonds spectrophotometry thermal lens spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ultrananocrystalline Diamond: Synthesis, Properties, and Applications, Shenderova, O.A. and Gruen, D.M., Eds., Norwich, New York: William Andrew, 2006, 624 p.Google Scholar
  2. 2.
    Shenderova, O.A., Zhirnov, V.V., and Brenner, D.W., Crit. Rev. Solid State Mater. Sci., 2002, vol. 27, no. 3, p. 227.CrossRefGoogle Scholar
  3. 3.
    Vereshchagin, A.L., Detonatsionnye Nanoalmazy (Detonation Nanodiamonds), Barnaul: Altai Gos. Tekhn. Univ., 2001.Google Scholar
  4. 4.
    Danilenko, V.V., Sintez i spekanie almazov vzryvom (Explosion Synthesis and Agglomeration of Diamonds), Moscow: Energoatomizdat, 2003, 241 p.Google Scholar
  5. 5.
    Dolmatov, V.Yu., Ul’tradispersnye almazy detonatsionnogo sinteza (Ultradispersed Diamonds of Detonation Synthesis), St. Petersburg: St. Peterb. Gos. Univ., 2003, 344 p.Google Scholar
  6. 6.
    Kidalov, S.V., Shakhov, F.M., and Vul, A.Y., Diamond Relat. Mater., 2008, vol. 17, nos. 4–5, p. 844.CrossRefGoogle Scholar
  7. 7.
    Kidalov, S.V., Shakhov, F.M., and Vul, A.Y., Diamond Relat. Mater., 2007, vol. 16, no. 12, p. 2063.CrossRefGoogle Scholar
  8. 8.
    Ralchenko, V.G., Nano- and Microstructral Features in CVD Diamond Growth, Benedek, G., Milani, P., and Ralchenko, V.G., Eds, Nanostructured Carbon for Advanced Applications, Dordrecht: Küwer Academic, 2001.Google Scholar
  9. 9.
    Hens, S.C., Cunningham, G., Tyler, T., Moseenkov, S., Kuznetsov, V., and Shenderova, O., Diamond Relat. Mater., 2008, vol. 17, no. 11, p. 1858.CrossRefGoogle Scholar
  10. 10.
    Hartl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feulner, P., Kromka, A., Steinmuller, D., and Stutzmann, M., Nat. Mater., 2004, vol. 3, no. 10, p. 736.CrossRefGoogle Scholar
  11. 11.
    Yang, W., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J.E., Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, J.N., Smith, L.M., and Hamers, R.J., Nat. Mater., 2002, vol. 1, no. 4, p. 253.CrossRefGoogle Scholar
  12. 12.
    Knickerbocker, T., Strother, T., Schwartz, M.P., Russell, J.N., Butler, J., Smith, L.M., and Hamers, R.J., Langmuir, 2003, vol. 19, no. 6, p. 1938.CrossRefGoogle Scholar
  13. 13.
    Dahoumane, S.A., Nguyen, M.N., Thorel, A., Boudou, J.-P., Chehimi, M.M., and Mangeney, C., Langmuir, 2009, vol. 25, no. 17, p. 9633.CrossRefGoogle Scholar
  14. 14.
    Huang, L.C.L. and Chang, H.-C., Langmuir, 2004, vol. 20, no. 14, p. 5879.CrossRefGoogle Scholar
  15. 15.
    Kong, X.L., Huang, L.C.L., Hsu, C.M., Chen, W.H., Han, C.C., and Chang, H.C., Anal. Chem., 2005, vol. 77, no. 1, p. 259.CrossRefGoogle Scholar
  16. 16.
    Rubio-Retama, J., Hernando, J., López-Ruiz, B., Hårtl, A., Steinmüller, D., Stutzmann, M., López-Cabarcos, E., and Antonio Garrido, J., Langmuir, 2006, vol. 22, no. 13, p. 5837.CrossRefGoogle Scholar
  17. 17.
    Kuga, S., Yang, J.-H., Takahashi, H., Hirama, K., Iwasaki, T., and Kawarada, H., J. Am. Chem. Soc., 2008, vol. 130, no. 40, p. 13251.CrossRefGoogle Scholar
  18. 18.
    Yang, N., Uetsuka, H., Osawa, E., and Nebel, C.E., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 28, p. 5183.CrossRefGoogle Scholar
  19. 19.
    Puzyr’, A.P., Pozdnyakova, I.O., and Bondar’, V.S., Phys. Solid State, 2004, vol. 46, no. 4, p. 716.CrossRefGoogle Scholar
  20. 20.
    Purtov, K.V., Bondar’, V.S., and Puzyr’, A.P., Dokl. Ross. Akad. Nauk, 2001, vol. 380, no. 3, p. 411.Google Scholar
  21. 21.
    Chen, W.-H., Lee, S.-C., Sabu, S., Fang, H.-C., Chung, S.-C., Han, C.-C., and Chang, H.-C., Anal. Chem., 2006, vol. 78, no. 12, p. 4228.CrossRefGoogle Scholar
  22. 22.
    Chang, H.-C., Development and Use of Fluorescent Nanodiamonds as Cellular Markers, Ho, D., Ed., in Nanodiamonds: Applications in Biology and Nanoscale Medicine, New York, Dordrecht, Heidelberg, London: Springer, 2010, 304 p.Google Scholar
  23. 23.
    Barnard, A.S., Analyst, 2009, vol. 134, no. 9, p. 1751.CrossRefGoogle Scholar
  24. 24.
    Hui, Y.Y., Cheng, C.-L., and Chang, H.-C., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 37, p. 374021.CrossRefGoogle Scholar
  25. 25.
    Vaijayanthimala, V., Tzeng, Y.-K., Chang, H.-C., and Li, C.-L., Nanotechnol., 2009, vol. 20, no. 42, p. 425103.CrossRefGoogle Scholar
  26. 26.
    Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P.A., Sennour, M., Thorel, A., Borsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P.R., Jelezko, F., and Wrachtrup, J., ACS Nano, vol. 3, no. 7, p. 1959.Google Scholar
  27. 27.
    Fu, C.-C., Lee, H.-Y., Chen, K., Lim, T.-S., Wu, H.-Y., Lin, P.-K., Wei, P.-K., Tsao, P.-H., Chang, H.-C., and Fann, W., Proc. Nat. Acad. Sci. U.S.A., 2007, vol. 104, no. 3, p. 727.CrossRefGoogle Scholar
  28. 28.
    Wee, T.-L., Mau, Y.-W., Fang, C.-Y., Hsu, H.-L., Han, C.-C., and Chang, H.-C., Diamond Relat. Mater., 2009, vol. 18, nos 2–3, p. 567.CrossRefGoogle Scholar
  29. 29.
    Hui, Y.Y., Chang, Y.-R., Lim, T.-S., Lee, H.-Y., Fann, W., and Chang, H.-C., Appl. Phys. Lett., 2009, vol. 94, no. 1, p. 013104.CrossRefGoogle Scholar
  30. 30.
    Chang, Y.-R., Lee, H.-Y., Chen, K., Chang, C.-C., Tsai, D.-S., Fu, C.-C., Lim, T.-S., Tzeng, Y.-K., Fang, C.-Y., Han, C.-C., Chang, H.-C., and Fann, W., Nat. Nano, vol. 3, no. 5, p. 284.Google Scholar
  31. 31.
    Mohan, N., Tzeng, Y.-K., Yang, L., Chen, Y.-Y., Hui, Y.Y., Fang, C.-Y., and Chang, H.-C., Adv. Mater., 2010, vol. 22, no. 7, p. 843.CrossRefGoogle Scholar
  32. 32.
    Smith, B.R., Inglis, D.W., Sandnes, B., Rabeau, J.R., Zvyagin, A.V., Gruber, D., Noble, C.J., Vogel, R., Osawa, E., and Plakhotnik, T., Small, 2009, vol. 5, no. 14, p. 1649.CrossRefGoogle Scholar
  33. 33.
    Mochalin, V.N. and Gogotsi, Y., J. Am. Chem. Soc., 2009, vol. 131, no. 13, p. 4594.CrossRefGoogle Scholar
  34. 34.
    Takimoto, T., Chano, T., Shimizu, S., Okabe, H., Ito, M., Morita, M., Kimura, T., Inubushi, T., and Komatsu, N., Chem. Mater., 2010, vol. 22, no. 11, p. 3462.CrossRefGoogle Scholar
  35. 35.
    Martín, R., álvaro, M., Herance, J.R.L., and García, H., ACS Nano, 2010, vol. 4, no. 1, p. 65.CrossRefGoogle Scholar
  36. 36.
    Aleksenskii, A.E., Osipov, V.Yu., Vul’, A.Ya., Ber, B.Ya., Smirnov, A.B., Melekhin, V.G., Adriaenssens, G.J., and Iakoubovskii, K., Phys. Solid State, 2001, vol. 43, no. 1, p. 145.CrossRefGoogle Scholar
  37. 37.
    Aleksenskii, A.E., Osipov, V.Yu., Kryukov, N.A., Adamchuk, V.K., Abaev, M.I., Vul’, S.P., and Vul’, A.Ya., Pis’ma v Zhurn. Tekhn. Fiz., 1997, vol. 23, no. 22, p. 39.Google Scholar
  38. 38.
    Aleksenskii, A.E., Baidakova, M.V., Vul’, A.Ya., Davydov, V.Yu., and Pevtsova, Yu.A., Fiz. Tv. Tela, 1997, vol. 39, no. 6, p. 1125.Google Scholar
  39. 39.
    Ivanov-Omskii, V.I., Tolmatchev, A.V., and Yastrebov, S.G., Philos. Mag., vol. 73, no. 4, p. 715.Google Scholar
  40. 40.
    Chu, V., Conde, J.P., Jarego, J., Brogueira, P., Rodriguez, J., Barradas, N., and Soares, J.C., J. Appl. Phys., 1995, vol. 78, no. 5, p. 3164.CrossRefGoogle Scholar
  41. 41.
    Stumm, P. and Drabold, D.A., Solid State Commun., 1995, vol. 93, no. 7, p. 617.CrossRefGoogle Scholar
  42. 42.
    Mironov, E., Petrov, E., and Koretz, A., Diamond Relat. Mater., 2003, vol. 12, no. 9, p. 1472.CrossRefGoogle Scholar
  43. 43.
    Mironov, E.V., Petrov, E.A., and Korets, A.Ya., Combust. Explosion, Shock Waves, 2004, vol. 40, no. 4, p. 473.CrossRefGoogle Scholar
  44. 44.
    Tomita, S., Hayashi, S., Tsukuda, Y., and Fujii, M., Phys. Solid State, 2002, vol. 44, no. 3, p. 450.CrossRefGoogle Scholar
  45. 45.
    Tomita, S., Fujii, M., and Hayashi, S., Phys. Rev. B, 2002, vol. 66, no. 24, p. 245424.CrossRefGoogle Scholar
  46. 46.
    Shenderova, O., Grichko, V., Hens, S., and Walch, J., Diamond Relat. Mater., 2007, vol. 16, no. 12, p. 2003.CrossRefGoogle Scholar
  47. 47.
    Proskurnin, M.A., Abroskin, A.G., and Radushkevich, D.Yu., Zh. Anal. Khim., 1999, vol. 54, no. 1, p. 101.Google Scholar
  48. 48.
    Proskurnin, M.A., Tokeshi, M., Slyadnev, M.N., and Kitamori, T., Anal. Sci., 2001, vol. 17.Google Scholar
  49. 49.
    Brusnichkin, A.V., Nedosekin, D.A., Galanzha, E.I., Vladimirov, Y.A., Shevtsova, E.F., Proskurnin, M.A., and Zharov, V.P., J. Biophotonics, 2010, vol. 3, no. 12, p. 791.CrossRefGoogle Scholar
  50. 50.
    Nedosekin, D.A., Brusnichkin, A.V., Luk’yanov, A.Y., Eremin, S.A., and Proskurnin, M.A., Appl. Spectrosc., 2010, vol. 64, no. 8, p. 942.CrossRefGoogle Scholar
  51. 51.
    Compendium on Analytical Nomenclature: Definitive Rules 1997, Inczédy, J., Lengyel, T., and Ure, A.M., Eds., New York: Blackwell Science, 1998, 3rd ed., 674 p.Google Scholar
  52. 52.
    Bialkowski, S.E., Photothermal Spectroscopy Methods for Chemical Analysis, New York: Wiley, 1996, 584 p.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. S. Volkov
    • 1
  • P. I. Semenyuk
    • 2
  • M. V. Korobov
    • 1
  • M. A. Proskurnin
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations