Journal of Analytical Chemistry

, Volume 67, Issue 8, pp 687–693 | Cite as

Fabrication of an optical sensor based on the immobilization of Qsal on the plasticized PVC membrane for the determination of copper(II)

  • B. Rezaei
  • H. Hadadzadeh
  • A. Azimi


A novel optical sensor has been proposed for sensitive determination of Cu(II) ion in aqueous solutions. The copper sensing membrane was prepared by incorporating Qsal (2-(2-hydroxyphenyl)-3H-anthra[2,1-d]imidazole-6,11-dione) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to Cu(II) ion by changing color reversibly from yellow to dark red in acetate buffer solution at pH 4.0. The proposed sensor displays a linear range of 6.3 × 10−7−1.00 × 10−4 M with a limit of detection of 3.3 × 10−7 M. The response time of the optical sensor was about 3–5 min, depending on the concentration of Cu(II) ions. The selectivity of the optical sensor to Cu(II) ions in acetate buffer is good. The sensor can readily be regenerated by hydrochloric acid (0.1 M). The optical sensor is fully reversible. The proposed optical sensor was applied to the determination of Cu(II) in environmental water samples.


optical sensor ionophore PVC membrane plasticizer absorbance semiempirical PM6 calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Desvergne, J.P. and Czarnik, A.W., Chemosensors for Ion and Molecule Recognition, Boston: Kluwer, 1997.Google Scholar
  2. 2.
    Hisamoto, H. and Suzuki, K., Trends Anal. Chem., 1999, vol. 48, p. 513.CrossRefGoogle Scholar
  3. 3.
    Wolfbeis, O.S., Anal. Chem., 2000, vol. 72, p. 81.CrossRefGoogle Scholar
  4. 4.
    Zare-Shahabadi, V., Akhond, M., Tashkhourian, J., and Abbasitabar, F., Sens. Actuators, B, 2009, vol. 141, p. 34.CrossRefGoogle Scholar
  5. 5.
    Zare-Dorabei, R., Norouzi, P., and Ganjali, M.R., J. Hazard. Mater., 2009, vol. 171, p. 601.CrossRefGoogle Scholar
  6. 6.
    Canada, T.A., Beach, D.B., and Xue, Z.L., Anal. Chem., 2005, vol. 77, p. 2842.CrossRefGoogle Scholar
  7. 7.
    Gholivand, M.B., Niroomandi, P., Yari, A., and Joshagani, M., Anal. Chim. Acta, 2005, vol. 538, p. 225.CrossRefGoogle Scholar
  8. 8.
    Grafe, A., Haupt, K., and Mohr, G.J., Anal. Chim. Acta, 2006, vol. 565, p. 42.CrossRefGoogle Scholar
  9. 9.
    Hu, Y.J., Tan, S.Z., Shen, G.L., and Yu, R.Q., Anal. Chim. Acta, 2006, vol. 570, p. 170.CrossRefGoogle Scholar
  10. 10.
    Kuswandi, B., Huskens, J., and Verboom, W., Anal. Chim. Acta, 2007, vol. 601, p. 141.CrossRefGoogle Scholar
  11. 11.
    Barranguet, C., Van Den Ende, F.P., Rutgers, M., Breure, A.M., Greijdanus, M., Sinke, J.J., and Admiraal, W., Environ. Toxicol. Chem., 2003, vol. 22, p. 1340.Google Scholar
  12. 12.
    Xia, J., Wei, W., Hu, Y., Tao, H., and Wu, L., Anal. Sci., 2004, vol. 20, p. 1037.CrossRefGoogle Scholar
  13. 13.
    Oehme, I. and Wolfbeis, O.S., Microchim. Acta, 1997, vol. 126, p. 177.CrossRefGoogle Scholar
  14. 14.
    Sanchez-Pedren~o, C., García, M.S., Ortunõ, J.A., Albero, M.I., and Ballester, E., Anal. Bioanal. Chem., 2001, vol. 369, p. 680.Google Scholar
  15. 15.
    Malcik, N., Caglar, P., and Narayanaswamy, R., Quim. Anal., 2000, vol. 19, p. 94.Google Scholar
  16. 16.
    Morf, W.E., Seiler, K., Rusterholz, B., and Simon, W., Anal. Chem., 1990, vol. 62, p. 738.CrossRefGoogle Scholar
  17. 17.
    Faulmann, C., Dorbes, S., Lampert, S., Jacob, K., Bonneval, B.G., Molnar, G., Bousseksou, A., Real, J.A., and Valade, L., Inorg. Chim. Acta, 2007, vol. 360, p. 3870.CrossRefGoogle Scholar
  18. 18.
    Dias, J.C., Vieira, B., Pereira, L.C.J., and Gama, V.D., Inorg. Chim. Acta, 2008, vol. 362, p. 2076.CrossRefGoogle Scholar
  19. 19.
    Hayami, S., Hiki, K., Kawahara, T., Maeda, Y., Urakami, D., Inoue, K., Ohama, M., Kawata, S., and Sato, O., Chem. Eur. J., 2009, vol. 15, p. 3497.CrossRefGoogle Scholar
  20. 20.
    Djukic, B., Poddutoori, P.K., Dube, P.A., Seda, T., Jenkins, H.A., and Lemaire, M.T., Inorg. Chem., 2009, vol. 48, p. 6109.CrossRefGoogle Scholar
  21. 21.
    Djukic, B., Dube, P.A., Razavi, F., Seda, T., Jenkins, H.A., Britten, J.F., and Lemaire, M.T., Inorg. Chem., 2009, vol. 48, p. 699.CrossRefGoogle Scholar
  22. 22.
    Stewart, J.J.P., J. Comput.-Aided Mol. Des., 1990, vol. 4, p. 1; Stewart, J.J.P., MOPAC2009, Stewart Computational Chemistry, Colorado Springs, CO, 2009. CrossRefGoogle Scholar
  23. 23.
    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984.Google Scholar
  24. 24.
    Yang, X., Kumar, N., Chi, H., Hibert, D.B., and Alexander, P.W., Electroanalysis, 1997, vol. 9, p. 549.CrossRefGoogle Scholar
  25. 25.
    Barkker, E., Buhlmann, P., and Pretsch, P., Chem. Rev., 1997, vol. 97, p. 3083.CrossRefGoogle Scholar
  26. 26.
    Hodinar, A. and Jyo, A., Anal. Chem., 1989, vol. 61, p. 1169.CrossRefGoogle Scholar
  27. 27.
    Chamjangali, M.A., Soltanpanah, S., and Goudarzi, N., Sens. Actuators, B, 2009, vol. 138, p. 251.CrossRefGoogle Scholar
  28. 28.
    Sanchez-Pedren~o, C., Ortun~o, J.A., Albero, M.I., García, M.S., and Garcia de las Bayonas, J.C., Fresenius’ J. Anal. Chem., 2000, vol. 366, p. 811.CrossRefGoogle Scholar
  29. 29.
    Safavi, A. and Bagheri, M., Sens. Actuators, B, 2005, vol. 107, p. 53.CrossRefGoogle Scholar
  30. 30.
    Shamsipura, M., Poursaberib, T., Avanesc, A., and Sharghi, H., Spectrochim. Acta, Part A, 2006, vol. 63, p. 9.CrossRefGoogle Scholar
  31. 31.
    Zhan, X.B., Peng, J., Heb, C.L., Shen, G.L., and Yu, R.Q., Anal. Chim. Acta, 2006, vol. 567, p. 189.CrossRefGoogle Scholar
  32. 32.
    Hancock, R.D., Melton, D.L., Harrington, J.M., McDonald, F.C., Gephart, R.Y., Boone, L.L., Jones, S.B., Dean, N.E., Whitehead, J.R., and Cockrell, G.M., Coord. Chem. Rev., 2007, vol. 251, p. 1678.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • B. Rezaei
    • 1
  • H. Hadadzadeh
    • 1
  • A. Azimi
    • 1
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations