Journal of Analytical Chemistry

, Volume 65, Issue 10, pp 1045–1051 | Cite as

Potentiometric determination of dysprosium(III) ion using zirconium(IV) antimonomolybdate as an electroactive material

  • S. K. Mittal
  • Raj Kumar
  • Pernita Dogra
  • Harish K. Sharma


Membranes containing varying compositions of electroactive material and epoxy resin as binder have been prepared and it has been shown that the one having composition 60% ZrSbMo and 40% epoxy resin exhibits best performance. The membrane demonstrates excellent response in the concentration range of 10−4 to 10−1 M Dy(III) ion with super-Nernstian slope of 44.0 mV/decade and fast response time of less than 10 s. Effect of internal solution was studied and the electrode was successfully used in partially non-aqueous medium. The proposed sensor revealed good selectivity with respect to alkali, alkaline earth, some transition and rare earth metal ions. It can be used in the pH range of 2.10–9.80. The sensor was used as an indicator electrode in the potentiometric titration of Dy(III) ion against EDTA.

Key words

potentiometry determination of disprosium zirconium(IV) antimonomolybdate electroactive materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganjali, M.R., Rezapour, M., and Haghgoo, S., Sens. Actuat. B, 2003, vol. 89, p. 21.CrossRefGoogle Scholar
  2. 2.
    Gao Baisbeng, Present and Future Situation of Rare Earth Research in Chinese Agronomy: New Frontiers in Rare Earth Science and Applications, Xu Guangxian and Xiano Jimei, Eds., Bejing: Science, 1985.Google Scholar
  3. 3.
    Gu Zhimang, Wang Xiaorang, Cheng Jing, Wang Lian-sheng, and Dai Lemej, Chem. Specific. Bio-availability, 2000, vol. 12, no. 2, p. 53.Google Scholar
  4. 4.
    Hopkins, B.S., Chemistry of the Rare Elements, Boston: D.C. Heath and Company, 1923.Google Scholar
  5. 5.
    Hrdlicka, A.A., Havei, J., and Moreno, C., Anal. Sci., 1991, vol. 7, p. 925.CrossRefGoogle Scholar
  6. 6.
    Mazzucotelli, A., Depaz, F., Magi, E., and Frache, B., Anal. Sci., 1992, vol. 8, p. 189.CrossRefGoogle Scholar
  7. 7.
    Masuda, A., Nakamura, N., and Tanaka, T., Geochim. Cosmochim. Acta, 1973, vol. 37, p. 239.CrossRefGoogle Scholar
  8. 8.
    Marsh, S.F., Anal. Chem., 1967, vol. 39, p. 641.CrossRefGoogle Scholar
  9. 9.
    Comell, D.H., Pure Appl. Chem., 1993, vol. 65, p. 2453.CrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Zhu, G., Jiao, X., Liu, W., Pang, W., J. Mater. Chem. 2000, vol. 10, p. 463.CrossRefGoogle Scholar
  11. 11.
    Ganjali, M.R., Norouzi, P., Faridbod, F., Hajiabdollah, N., Larijani, B., and Hanifehpour, Y., Anal. Lett., 2007, vol. 40, p. 2544.CrossRefGoogle Scholar
  12. 12.
    Gupta, A.P. and Verma, G.L., and Agrawal, H., Ind. J. Chem., 2003, vol. 42A, p. 1910.Google Scholar
  13. 13.
    Arnold, M.A. and Solsky, R.L., Anal. Chem., 1986, vol. 58, p. 84.CrossRefGoogle Scholar
  14. 14.
    Buck, R.P. and Linder, E., Pure Appl. Chem., 1994, vol. 66, p. 2527.CrossRefGoogle Scholar
  15. 15.
    Kraus, K.A. and Phillips, H.O., J. Am. Chem. Soc., 1956, vol. 78, p. 694.CrossRefGoogle Scholar
  16. 16.
    Kraus, K.A., Phillips, H.O., Carlson, T.A., and Johnson, J.S., Proc. 2nd UN Conf. Peaceful Uses At. Energy, Geneva, 1958, vol. 28, p. 3.Google Scholar
  17. 17.
    Amphlett, C.B., Proc. 2nd UN Conf. Peaceful Uses At. Energy, Geneva, 1958, vol. 28, p. 17.Google Scholar
  18. 18.
    Amphlett, C.B., Inorganic Ion Exchangers, Amsterdam: Elsevier, 1964.Google Scholar
  19. 19.
    Bakker, E., Electroanalysis, 1997, vol. 9, p, 7.CrossRefGoogle Scholar
  20. 20.
    Umezawa, Y., Umezawa, K., Sato, H., Pure Appl. Chem., 1995, vol. 67, p. 507.CrossRefGoogle Scholar
  21. 21.
    Mittal, S.K., Sharma, H.K., and Kumar, S.K.A., React. Funct. Polym., 2006, vol. 66, p. 1184.CrossRefGoogle Scholar
  22. 22.
    Ganjali, M.R., Nozouri, P., Alizhadeh, T.A., and Tajarodi, Y., Sens. Actuators B, 2007, vol. 120, p. 487.CrossRefGoogle Scholar
  23. 23.
    Mittal, S.K., Sharma, H.K., and Kumar, S.K.A., Sensors, 2004, vol. 4, p. 135.CrossRefGoogle Scholar
  24. 24.
    Jain, A.K., Singh, R.P., and Bala, C., Anal. Lett., 1982, vol. 15, p. 1557.Google Scholar
  25. 25.
    Malik, W.U., Srivastava, S.K., and Bansal, A., Anal. Chem., 1982, vol. 4, p. 1399.CrossRefGoogle Scholar
  26. 26.
    Jain, A.K, Singh, R.P., and Agrawal, S., Fresenius Z. Anal. Chem., 1980, vol. 302, p. 407.CrossRefGoogle Scholar
  27. 27.
    Harsanyi, E.G., Toth, K., Polos, L., and Pungor, E., Anal. Chem., 1982, vol. 54, p. 1094.CrossRefGoogle Scholar
  28. 28.
    Harsanyi, E.G., Toth, K., and Pungor, E., Anal. Chim. Acta, 1984, vol. 161, p. 333.CrossRefGoogle Scholar
  29. 29.
    Ganjali, M.R., Matloobi, P. Ghorbani, M., Norouzi, P., and Salavati-Niasari, M., Bull. Korean Chem. Soc., 2005, vol. 26, p. 38.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. K. Mittal
    • 1
  • Raj Kumar
    • 2
  • Pernita Dogra
    • 3
  • Harish K. Sharma
    • 3
  1. 1.School of Chemistry and BiochemistryThapar University PatialaPatialaIndia
  2. 2.Department of ChemistryJ.V. Jain CollegeSaharanpurIndia
  3. 3.Department of ChemistryM.M.UniversityMullanaIndia

Personalised recommendations