Advertisement

Journal of Analytical Chemistry

, Volume 62, Issue 1, pp 51–57 | Cite as

Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues

  • N. Yu. Ignat’eva
  • N. A. Danilov
  • S. V. Averkiev
  • M. V. Obrezkova
  • V. V. Lunin
  • E. N. Sobol’
Articles

Abstract

The concentrations of hydroxyproline (an amino acid specific of collagen) in a number of connective tissues were determined. Two procedures were compared. In one of them, amino acids were preseparated by chromatography and then determined on a standard amino acid analyzer. In the other procedure, hydroxyproline was selectively oxidized without amino acid separation and determined by a spectrophotometric reaction with Ehrlich’s reagent. Data obtained for purified collagen preparations in accordance with the two procedures were consistent with each other. The results can be somewhat different in unpurified preparations and tissues because of the presence of polysaccharide components in the tissues.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepanov, V.M., Molekulyarnaya biologiya (Molecular Biology), Moscow: Vysshaya Shkola, 1996.Google Scholar
  2. 2.
    Blumenkrantz, N. and Asboe-Hansen, G., Acta Derm. Venerol., 1978, vol. 58, p. 111.Google Scholar
  3. 3.
    Billinghurst, R.C., Buxton, E.M., and Edwards, G.M., Am. J. Vet. Res., 2001, vol. 62, p. 1031.CrossRefGoogle Scholar
  4. 4.
    Hollander, A.P., Heathfield, T.F., Iwata, Y., Bourne, R., and Rorabeck, C., Clin. Invest. J., 1994, vol. 93, p. 1722.CrossRefGoogle Scholar
  5. 5.
    Bergman, I. and Loxley, R., Anal. Chem., 1970, vol. 42, p. 703.CrossRefGoogle Scholar
  6. 6.
    March, J., Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, McGraw-Hill Series in Advanced Chemistry, New York: McGraw-Hill, 1968.Google Scholar
  7. 7.
    Woessner, J.F. and Woessner, J.R., Arch. Biochem. Biophys., 1961, vol. 93, p. 440.CrossRefGoogle Scholar
  8. 8.
    Schwartz, D.E., Sandell, L.J., and Hanson, W.R., Histochem. J., 1985, vol. 17, p. 655.CrossRefGoogle Scholar
  9. 9.
    Ohara, R., Tanaka, A., and Ohara, O., BioTechniques, 1997, vol. 22, p. 656.Google Scholar
  10. 10.
    Yurovskaya, M.A., Metody sinteza i khimicheskie svoistva aromaticheskikh geterotsiklicheskikh soedinenii (Methods of Synthesis and Chemical Properties of Aromatic Heterocyclic Compounds), Moscow: Mir, 1998.Google Scholar
  11. 11.
    Yannas, J., Burke, J., and Gordon, P., J. Biomed. Mater. Res., 1980, vol. 14, no. 1, p. 65.CrossRefGoogle Scholar
  12. 12.
    Tsugita, A. and Scheffler, J., Eur. J. Biochem., 1982, vol. 124, p. 585.CrossRefGoogle Scholar
  13. 13.
    Blumenkrantz, N., Sylvest, J., and Asboe-Hansen, G., Biochem. Med., 1977, vol. 18, p. 283.CrossRefGoogle Scholar
  14. 14.
    Urban, J. and Roberts, S., Arthritis Res. Ther., 2003, vol. 5, no. 3, p. 116.CrossRefGoogle Scholar
  15. 15.
    Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., and Bairoch, A., Nucleic Acid Res., 2003, vol. 31, p. 3784.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. Yu. Ignat’eva
    • 1
    • 2
  • N. A. Danilov
    • 1
  • S. V. Averkiev
    • 1
    • 2
  • M. V. Obrezkova
    • 1
  • V. V. Lunin
    • 1
  • E. N. Sobol’
    • 2
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations