Journal of Analytical Chemistry

, Volume 61, Issue 10, pp 952–966 | Cite as

Construction of a multivariate calibration by the simple interval calculation method

  • A. L. Pomerantsev
  • O. Ye. Rodionova


Simple interval calculation is a method for linear modeling and for constructing interval estimates of predictions in a multivariate calibration. Simple interval calculation gives results in a convenient interval form with regard to all the existing uncertainties: measurement errors of predictors and responses, discrepancies of bilinear modeling, and so on. In addition, the simple interval calculation method opens new opportunities for constructing an informative classification of object significance. The method is based on only the assumption of the error boundedness; it uses linear programming algorithms for data analysis. This approach differs substantially from the conventional regression methods used in chemometrics and, therefore, is poorly understood by analysts. This paper gives an elementary explanation of the simple interval calculation method illustrated by the simplest model and real examples.


Maximum Error Object Status Prediction Interval Octane Number Multivariate Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Analytical Chemistry. The Approved Text to FECS Curriculum Analytical Chemistry, Kellner, R., Otto, M., and Widmer, M., Eds., Weinheim: Wiley-VCH, 1998.Google Scholar
  2. 2.
    Tikhonov, A.N., Dokl. Akad. Nauk SSSR, 1963, vol. 4, p. 1035.Google Scholar
  3. 3.
    Mar’yanov, B.M., Izbrannye glavy khemometriki (Selected Chapters of Chemometrics), Tomsk: Tomsk. Gos. Univ., 2004.Google Scholar
  4. 4.
    Bard, Y., Nonlinear Parameter Estimation, New York: Academic, 1974.Google Scholar
  5. 5.
    Pearson, K., Phillip. Mag, 1901, vol. 2, no. 6, p. 559.Google Scholar
  6. 6.
    Demidenko, E.Z., Lineinaya i nelineinaya regressii (Linear and Nonlinear Regressions), Moscow: Finansy i Statistika, 1981.Google Scholar
  7. 7.
    Martens, H. and Noes, T., Multivariate Calibration, New York: Wiley, 1998.Google Scholar
  8. 8.
    Naes, T., Isaksson, T., Fearn, T., and Davies, T., Multivariate Calibration and Classification, NIR Publications, 2002.Google Scholar
  9. 9.
    Faber, K., Chemom. Intell. Lab. Syst., 2000, vol. 52, p. 123.CrossRefGoogle Scholar
  10. 10.
    Pomerantsev, A.L., Chemom. Intell. Lab. Syst., 1999, vol. 49, p. 41.CrossRefGoogle Scholar
  11. 11.
    Kantorovich, L.V., Sib. Mat. Zh., 1962, vol. 3, no. 5, p. 701.Google Scholar
  12. 12.
    Voshchinin, A.P., Bochkov, A.F., and Sotirov, G.R., Zavod. Lab., 1990, vol. 56, no. 7, p. 76.Google Scholar
  13. 13.
    Anisimov, V.M., Pomerantsev, A.L., Novoradovskii, A.G., and Karpukhin, O.N., Zh. Prikl. Spektrosk., 1987, vol. 46, p. 117.Google Scholar
  14. 14.
    Akhunov, I.R., Akhmadishin, Z.Sh., and Spivak, S.I., Khim. Fiz., 1982, vol. 12, p. 1660.Google Scholar
  15. 15.
    Bakhitova, R.Kh and Spivak, S.I., Khim. Khim. Tekhnol., 1999, vol. 42, p. 92.Google Scholar
  16. 16.
    Slin’ko, M.G., Spivak, S.I., and Timoshenko, V.I., Kinet. Katal., 1972, vol. 13, p. 1570.Google Scholar
  17. 17.
    Spivak, S.I., Timoshenko, V.I, and Slin’ko, M.G., Dokl. Akad. Nauk SSSR, 1970, vol. 192, p. 580.Google Scholar
  18. 18.
    Belov, V.M., Karbainov, Yu.A., Sukhanov, V.A., et al., Zh. Anal. Khim., 1994, vol. 49, p. 370.Google Scholar
  19. 19.
    Khlebnikov, A.I., Zh. Anal. Khim., 1996, vol. 51, no. 3, p. 347 [J. Anal. Chem. (Engl. Transl.), vol. 51, no. 3, p. 321].Google Scholar
  20. 20.
    Belov, V.M., Sukhanov, V.A., and Unger, F.G., Teoreticheskie i prikladnye aspekty metoda tsentra neopredelennosti (Theoretical and Applied Aspects of the Uncertainty Center Method), Novosibirsk: Nauka, 1995.Google Scholar
  21. 21.
    Pomerantsev, A.L. and Rodionova, O.Ye., Chemom. Intell. Lab. Syst., 2005, vol. 79.Google Scholar
  22. 22.
    Rodionova, O.Ye., Esbensen, K.H., and Pomerantsev, A.L., J. Chemom., 2004, vol. 18, p. 402.CrossRefGoogle Scholar
  23. 23.
    Westad, F. and Martens, H., J. Near Infrared Spectrosc., 2000, vol. 8, p. 117.Google Scholar
  24. 24.
    Cook, R.D., Technometrics, 1977, vol. 19, p. 15.CrossRefGoogle Scholar
  25. 25.
    Cook, R.D., J. Am. Stat. Assoc., 1979, vol. 74, p. 169.CrossRefGoogle Scholar
  26. 26.
    Andrews, D.F. and Pregibon, D., J. Royal Stat. Soc., 1978, vol. 40, p. 84.Google Scholar
  27. 27.
    Draper, N.R. and John, J.A., Technometrics, 1981, vol. 23, p. 21.CrossRefGoogle Scholar
  28. 28.
    Ns, T., J. Chemom., 1989, vol. 1, p. 121.CrossRefGoogle Scholar
  29. 29.
    Höskuldsson, A., Chemom. Intell. Lab. Syst., 2001, vol. 55, p. 23.CrossRefGoogle Scholar
  30. 30.
    Jouan-Rimbaud, D., Massart, D.L., Saby, C.A., and Puel, C., Anal. Chim. Acta, 1997, vol. 350, p. 149.CrossRefGoogle Scholar
  31. 31.
    Fernandez, Pierna, J.A., Wahl, F., de Noord, O.E., and Massart, D.L., Chemom. Intell. Lab. Syst., 2002, vol. 63, p. 27.CrossRefGoogle Scholar
  32. 32.
    Rodionova, O.Ye. and Pomerantsev, A.L., Progress in Chemometrics Research, New York: Nova Science, 2005, p. 43.Google Scholar
  33. 33.
    Pomerantsev, A.L. and Rodionova, O.Ye., Progress in Chemometrics Research, New York: Nova Science, 2005, p. 209.Google Scholar
  34. 34.
    Pomerantsev, A.L. and Rodionova, O.Ye., Aging of Polymers, Polymer Blends, and Polymer Composites, New York: Nova Science, 2002, vol. 2, p. 19.Google Scholar
  35. 35.
    Esbensen, K.H., Multivariate Data Analysis in Practice, 4th ed., CAMO, 2000.Google Scholar
  36. 36.
    Lang, A., Neftegaz. Tekhnol., 1994, no. 9, p. 10.Google Scholar
  37. 37.
    Clancey, V.J., Nature, 1947, vol. 159, p. 339.Google Scholar
  38. 38.
    Rajkó, R., Anal. Lett., 1994, vol. 27, p. 215.Google Scholar
  39. 39.
    Eriksson, L., Johansson, E., Kettaneh-Wold, N., and Wold, S., Multi-and Megavariate Data Analysis, Umeå: Umetrics, 2001.Google Scholar
  40. 40.
    Sulima, E.L., Zubkov, V.A., and Rusinov, L.A., Progress in Chemometrics Research, New York: Nova Science, 2005, p. 196.Google Scholar
  41. 41.
    Savitzky, A. and Golay, M.J.E., Anal. Chem., 1964, vol. 36, p. 1627.CrossRefGoogle Scholar
  42. 42.
    Höskuldsson, A., Prediction Methods in Science and Technology, Copenhagen: Thor, 1996, vol. 1.Google Scholar
  43. 43.
    Dantzing, D., Linear Programming, Its Generalizations, and Applications, Princeton, N.J.: Princeton Univ. Press, 1963.Google Scholar
  44. 44.
    Taha, H., Operations Research: An Introduction, 3 ed., New York: MacMillan, 1982, vol. 1.Google Scholar
  45. 45.
    Karmanov, V.G., Matematicheskoe programmirovanie (Mathematical Programming), 5th ed., Moscow: Fizmatlit, 2001.Google Scholar
  46. 46.
    Linear Programming Packages, available at (May 1, 2005).
  47. 47.
    GOST (State Standard) 8226-82: Engine Fuel. Research Method for Determining the Octane Number, 1982.Google Scholar
  48. 48.
    Gass, S., Linear Programming, 4th ed., New York: McGow-Hill, 1975.Google Scholar
  49. 49.
    Kuhn, H.W. and Tucker, A.W., Ann. Math. Studies (Princeton), 1956, vol. 38.Google Scholar
  50. 50.
    Eicker, F., Ann. Math. Stat, 1963, vol. 34, p. 447.Google Scholar
  51. 51.
    Gumbel, E., Statistics of Extremes, New York: Columbia Univ. Press, 1962.Google Scholar
  52. 52.
    The Unscramber, available at (May 1, 2005).

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. L. Pomerantsev
    • 1
  • O. Ye. Rodionova
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations