Advertisement

Tensiometric and Rheological Characteristics of Fractions of Humic and Hymatomelanic Acids

  • 3 Accesses

Abstract

The Du Nouy ring detachment and pendant drop methods have been employed to study the tensiometric (dynamic and equilibrium surface tensions) and surface rheological (viscoelasticity modulus and phase angle) characteristics of aqueous solutions of fractions of humic and hymatomelanic acids at a solution–air interface. It has been found that the fraction of low-molecular-weight hymatomelanic acids has high surface activity, while its surface layers are characterized by high viscoelasticity and storage elastisity moduli. The experimental dependences of the equilibrium surface tension and viscoelasticity modulus on the concentration of hymatomelanic acid salt solutions are adequately described in terms of the model of real two-dimensional solutions for polymolecular adsorption of polyelectrolytes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. 1.

    The programs were developed by E.V. Aksenenko (Eugene_Aksenenko@ukr.net).

REFERENCES

  1. 1

    Kukharenko, T.A., Okislennye v plastakh burye i kamennye ugli (Brown and Hard Coals Oxidized in Seams), Moscow: Nedra, 1972.

  2. 2

    Glebova, G.I., Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 1980.

  3. 3

    Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, New York: Oxford Univ. Press, 1998.

  4. 4

    Perminova, I.V. and Zhilin, D.M., in Zelenaya khimiya v Rossii (Green Chemistry in Russia), Lunin, V.V., Tundo, P., and Lokteva, E.S., Eds., Moscow: Mosk. Gos. Univ., 2004.

  5. 5

    Lunin, V.V., Lokteva, E.S., and Golubina, E.V., Khimiya v interesakh ustoichivogo razvitiya – zelenaya khimiya (Chemistry in Interests of Sustained Development: Green Chemistry), Moscow: Mosk. Gos. Univ., 2007.

  6. 6

    Obzor rynka guminovykh udobrenii v Rossii i mire (The Review of Humic Fertilizers Market in Russia and over the World), Moscow: OOO “IG “Infomain,” 2018.

  7. 7

    Terkhi, M.C., Taleb, F., Gossart, P., Semmoud, A., and Addou, A., J. Photochem. Photobiol. A, 2008, vol. 198, p. 205.

  8. 8

    Aquino, A.J.A., Tunega, D., Pašalić, H., Haberhauer, G., Gerzabek, M.H., and Lischka, H., Chem. Phys., 2008, vol. 349, p. 69.

  9. 9

    Lu, Y., Yan, M., and Korshin, G.V., Geochim. Cosmochim. Acta, 2017, vol. 213, p. 308.

  10. 10

    Baker, H. and Khalili, F., Anal. Chim. Acta, 2005, vol. 542, p. 240.

  11. 11

    Reiller, B.P., Moulin, V., Casanova, F., and Dautel, C., Radiochim. Acta, 2003, vol. 91, p. 513.

  12. 12

    Takahashi, Y. and Minai, Y., J. Nucl. Radiochem. Sci., 2004, vol. 5, p. 37.

  13. 13

    Giokas, D.L., Antelo, J., Paleologos, E.K., Arce, F., and Karayannis, M.I., J. Environ. Monit., 2002, vol. 4, p. 505.

  14. 14

    Mishima, S. and Nakagawa, T., J. Membr. Sci., 2004, vol. 228, p. 1.

  15. 15

    Negre, M., Schulten, H.-R., Gennari, M., and Vindrola, D., J. Environ. Sci. Health B, 2001, vol. 36, p. 107.

  16. 16

    Fukushima, M. and Tatsumi, K., Colloids Surf. A, 1999, vol. 155, p. 249.

  17. 17

    Struyk, Z. and Sposito, G., Geoderma, 2001, vol. 102, p. 329.

  18. 18

    Antilén, M., González, M.A., Pérez-Ponce, M., Gacitúa, M., Valle, M.A., Armijo, F., Río, R., and Ramírez, G., Int. J. Electrochem. Sci., 2011, vol. 6, p. 901.

  19. 19

    Martínez, C.M., Celis, L.B., and Cervantes, F.J., Appl. Microbiol. Biotechnol., 2013, vol. 97, p. 9897.

  20. 20

    Jiang, L., Mao, X., Yu, J., and Gan, F., Anti Corros. Meth. M, 2008, vol. 55, p. 204.

  21. 21

    Kasatkina, M.V., Fedorov, S.E., Gorokhov, M.V., and Kuratorov, A.V., RF Patent No. 2 221 900 (2004).

  22. 22

    Yudina, N.V., Pisareva, S.I., Pynchenkov, V.I., and Loskutova, Yu.V., Khim. Rastit. Syr’ya, 1998, no. 4, p. 33.

  23. 23

    Khil’ko, S.L., Efimova, I.V., and Smirnova, O.V., Khim. Tverd. Topl., 2011, no. 6, p. 3.

  24. 24

    Efimova, I.V., Smirnova, O.V., and Khil’ko, S.L., Russ. J. Appl. Chem., 2012, vol. 85, p. 1351.

  25. 25

    Smirnova, O.V., Efimova, I.V., and Khil’ko, S.L., Russ. J. Appl. Chem., 2012, vol. 85, p. 252.

  26. 26

    Efimova, I.V., Khil’ko, S.L., Smirnova, O.V., Berezhnoi, V.S., and Rybachenko, V.I., Khim. Tverd. Topl., 2013, no. 4, p. 3.

  27. 27

    Fed’ko, I.V., Gostishcheva, M.V., and Ismatova, R.R., Khim. Rastit. Syr’ya, 2005, no. 1, p. 49.

  28. 28

    Pant, K., Singh, B., and Thakur, N., Int. J. Toxicol. Pharmacol. Res., 2012, vol. 4, no. 2, p. 17.

  29. 29

    Akbas, A., Silan, C., Gulpinar, M.T., Sancak, E.B., Ozkanli, S.S., and Cakir, D.U., Inflammation, 2015, vol. 38, p. 2042.

  30. 30

    Berkovich, A.M., http://stomfaq.ru/53851/index. htm-l.

  31. 31

    Khil’ko, S.L. and Semenova, R.G., Khim. Tverd. Topl., 2016, no. 6, p. 66.

  32. 32

    Aristilde, L. and Sposito, G., Environ. Toxicol. Chem., 2013, vol. 32, p. 1467.

  33. 33

    Sutton, R. and Sposito, G., Environ. Sci. Technol., 2005, vol. 39, p. 9009.

  34. 34

    Baalousha, M., Motelica-Heino, M., Galaup, S., and Le Coustumer, P., Microsc. Res. Tech., 2005, vol. 66, p. 299.

  35. 35

    Piccolo, A., Soil Sci., 2001, vol. 166, p. 810.

  36. 36

    Fedotov, G.N. and Shoba, S.A., Eurasian Soil Sci., 2015, vol. 48, p. 1292.

  37. 37

    Khil’ko, S.L., Kovtun, A.I., and Fainerman, V.B., Colloid J., 2011, vol. 73, p. 110.

  38. 38

    Dmitrieva, E., Efimova, E., Siundiukova, K., and Perelomov, L., Environ. Chem. Lett., 2015, vol. 13, p. 197.

  39. 39

    Rozanova, M.S., Mylnikova, O.I., Klein, O.I., Filippova, O.I., Kholodov, V.A., Listov, E.L., and Kulikova, N.A., Eurasian Soil Sci., 2018, vol. 51, p. 1111.

  40. 40

    Meng, F., Yuan, G., Wei, J., Bi, D., Ok, Y.S., and Wang, H., Chemosphere, 2017, vol. 181, p. 461.

  41. 41

    Soleimani, M., Hajabbasi, M.A., Afyuni, M., Isfahan, S.A., Jensen, J.K., Holm, P.E., and Borggaard, O.K., J. Environ. Qual., 2010, vol. 39, p. 855.

  42. 42

    Lishtvan, I.I. and Kosarevich, I.V., Torfyanaya Prom-st, 1984, no. 1, p. 22.

  43. 43

    Khil’ko, S.L. and Titov, E.V., Kolloidn. Zh., 1993, vol. 55, p. 117.

  44. 44

    Khil’ko, S.L. and Titov, E.V., Russ. J. Appl. Chem., 2000, vol. 73, p. 1458.

  45. 45

    Khil’ko, S.L. and Titov, E.V., Khim. Tverd. Topl., 2001, no. 1, p. 78.

  46. 46

    Lotov, V.A., Maslov, S.G., and Chukhareva, N.V., Tekh. Tekhnol. Silikatov, 2004, vol. 11, nos. 3–4, p. 26.

  47. 47

    Gunsolus, I.L., Mousavi, M.P.S., Hussein, K., Bühlmann, P., and Haynes, C.L., Environ. Sci. Technol., 2015, vol. 49, p. 8078.

  48. 48

    Tang, Z., Zhao, X., Zhao, T., Wang, H., Wang, P., Wu, F., and Giesy, J.P., Environ. Sci. Technol., 2016, vol. 50, p. 8640.

  49. 49

    Kasymova, E.Dzh. and Li, S.P., Mezhdunar. Zh. Prikl. Fundam. Issled., 2017, no. 6(2), p. 219.

  50. 50

    Shishmina, L.V., Chukhareva, N.V., and Kravtsov, A.V., Koks Khim., 2002, no. 2, p. 7.

  51. 51

    Yudina, N.V and Tikhova, V.I., Khim. Rastit. Syr’ya, 2003, no. 1, p. 93.

  52. 52

    Popov, A.F., Lutsik, A.I., Titov, E.V., Suikov, S.Yu., and Khil’ko, S.L., RF Patent No. 5583, Byull. Izobret., No. 3 (2005).

  53. 53

    Miller, R., Makievski, A.V., and Fainerman, V.B., Stud. Interface Sci., 2001, vol. 13, p. 87.

  54. 54

    Rusanov, A.I. and Prokhorov, V.A., Mezhfaznaya tenziometriya (Interfacial Tensiometry), St. Petersburg: Khimiya, 1994.

  55. 55

    Loglio, G., Pandolfini, P., Miller, R., Makievski, A.V., Ravera, F., Ferrari, M., Liggieri, L., Novel Methods to Study Interfacial Layers, Amsterdam: Elsevier, 2001.

  56. 56

    Zholob, S.A., Makievski, A.V., Miller, R., and Fainerman, V.B., Adv. Colloid Interface Sci., 2007, vol. 322, p. 134.

  57. 57

    Ravera, F., Liggieri, L., and Loglio, G., in Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Boca Raton: CRC, 2009, vol. 1, p. 137.

  58. 58

    Zholob, S.A., Kovalchuk, V.I., Makievski, A.V., Kragel, J., Fainerman, V.B., and Miller, R., in Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Boca Raton: CRC, 2009, vol. 1, p. 77.

  59. 59

    Cook, R.L. and Langford, C.H., in Understanding Humic Substances. Advanced Methods, Properties and Applications, Cihabbour, E.A. and Davies, G., Eds., Sawston: Woodhead, 1999, p. 31.

  60. 60

    Kleinhempel, D., Albrecht-Thaer-Arhiv, 1970, vol. 14, no. 1, p. 3.

  61. 61

    Schnitzer, M. and Khan, S.U., Humic Substances in the Environment, New York: Marcel Dekker, 1972.

  62. 62

    Orlov, D.S., Sorosovskii Obrazovat. Zh., 1997, no. 2, p. 56.

  63. 63

    Stevenson, F.J., Humus Chemistry. Genesis, Composition, Reactions, New York: Wiley, 1982.

  64. 64

    Sein, L.T., Varnum, J.M., and Jansen, S.A., Environ. Sci. Technol., 1999, vol. 33, p. 546.

  65. 65

    Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, Formation), Ermakov, E.I., Ed., St. Petersburg: S.-Peterb. Univ., 2004.

  66. 66

    Orsi, M., Chem. Biol. Technol. Agriculture, 2014, vol. 1, p. 10.

  67. 67

    Fainerman, V.B. and Miller, R., Colloid J., 2005, vol. 67, p. 393.

  68. 68

    Fainerman, V.B., Lucassen-Reynders, E.H., and Miller, R., Adv. Colloid Interface Sci., 2003, vol. 106, p. 237.

  69. 69

    Pranzas, P.K., Willumeit, R., Gehrke, R., Thieme, J., and Knöchel, A., Anal. Bioanal. Chem., 2003, vol. 376, p. 618.

  70. 70

    Shang, Ch. and Rice, J.A., J. Colloid Interface Sci., 2007, vol. 305, p. 57.

  71. 71

    Ryabova, I.N. and Mustafina, G.A., Akulova 3.G., Satymbaeva A.S, Colloid J., 2009, vol. 71, p. 729.

  72. 72

    Parfenova, L.N., Trufanova, M.V., Selyanina, S.B., Bogolitsyn, K.G., Orlov, A.S., and Strigutskii, V.P., Fundam. Issled., 2014, vol. 12, p. 1411.

  73. 73

    www.sinterface.com.

  74. 74

    Sivakova, L.G., Lesnikova, N.P., Kim, N.M., and Rotova, G.M., Khim. Tverd. Topl., 2011, no. 1, p. 3.

  75. 75

    Kawahigashi, M., Sumida, H., and Yamamoto, K., J. Colloid Interface Sci., 2005, vol. 284, p. 463.

  76. 76

    Visser, S.A., Plant Soil, 1985, vol. 87, p. 209.

  77. 77

    Lucassen-Reynders, E.H., Fainerman, V.B., and Miller, R., J. Phys. Chem. B, 2004, vol. 108, p. 9173.

  78. 78

    Ward, A.F.H. and Tordai, L., J. Chem. Phys., 1946, vol. 14, p. 543.

  79. 79

    Sherwood, T., Pigford, R., and Wilkie, C.R., Mass Transfer, New York: McGraw-Hill, 1975.

  80. 80

    Cornel, P.K., Summers, R.S., and Roberts, P.V., J. Colloid Interface Sci., 1986, vol. 110, p. 149.

  81. 81

    Lead, J.R., Wilkinson, K.J., Starchev, K., Canonica, S., and Buffle, J., Environ. Sci. Technol., 2000, vol. 34, p. 1365.

  82. 82

    Otto, W.H., Britten, D.J., and Larive, C.K., J. Colloid Interface Sci., 2003, vol. 261, p. 508.

  83. 83

    Miller, R., Fainerman, V.B., Aksenenko, E.V., Leser, M.E., and Michel, M., Langmuir, 2004, vol. 20, p. 771.

  84. 84

    Khil’ko, S.L., Kotenko, A.A., Grebenyuk, S.A., Zarechnaya, O.M., and Mikhailov, V.A., Colloid J., 2019, vol. 81, p. 277.

  85. 85

    Fainerman, V.B., Usp. Khim., 1985, vol. 54, p. 1613.

  86. 86

    Fainerman, V.B., Zh. Fiz. Khim., 1990, vol. 64, p. 1611.

  87. 87

    Wustneck, R., Fainerman, V.B., Aksenenko, E.V., Kotsmar, Cs., Pradines, V., and Miller, R., Colloids Surf. A, 2012, vol. 404, p. 17.

  88. 88

    Dan, A., Wustneck, R., Kragel, J., Aksenenko, E.V., Fainerman, V.B., and Miller, R., Food Hydrocolloids, 2014, vol. 34, p. 193.

  89. 89

    Miller, R., Aksenenko, E.V., Zinkovych, I.I., and Fainerman, V.B., Adv. Colloid Interface Sci., 2015, vol. 222, p. 509.

  90. 90

    Pezennec, S., Gauthier, F., Alonso, C., Graner, F., Croguennec, T., Brule, G., and Renault, A., Food Hydrocolloids, 2000, vol. 14, p. 463.

  91. 91

    Noskov, B.A., Latnikova, A.V., Lin, S.-Y., Loglio, G., and Miller, R., J. Phys. Chem. C, 2007, vol. 111, p. 16 895.

  92. 92

    Babak, V.G. and Desbrieres, J., Colloid Polym. Sci., 2006, vol. 284, p. 745.

  93. 93

    Desbrieres, J. and Babak, V.G., Ross. Khim. Zh., 2008, vol. 52, no. 1, p. 75.

  94. 94

    Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., and Ermolaev, A.M., Kriosfera Zemli, 2017, vol. 21, no. 2, p. 70.

  95. 95

    Naidja, A., Huang, P.M., Anderson, D.W., and Kessel, C.V., Appl. Spectrosc., 2002, vol. 56, p. 318.

  96. 96

    Chen, J., Gu, B., LeBoeuf, E.J., Pan, H., and Dai, S., Chemosphere, 2002, vol. 48, p. 59.

  97. 97

    Silva, R.R., Lucena, G.N., De Freitas, G.A., and Matos, A.T., J. Sci. Commun., 2018, vol. 9, p. 264.

  98. 98

    Khil’ko, S.L., Kovtun, A.I., and Rybachenko, V.I., Khi-m. Tverd. Topl., 2011, no. 5, p. 50.

Download references

Author information

Correspondence to S. L. Khil’ko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khil’ko, S.L., Rogatko, M.I., Makarova, R.A. et al. Tensiometric and Rheological Characteristics of Fractions of Humic and Hymatomelanic Acids. Colloid J 81, 779–789 (2019). https://doi.org/10.1134/S1061933X2001007X

Download citation