Colloid Journal

, Volume 81, Issue 6, pp 773–778 | Cite as

Electrokinetic Potential and Size Distribution of Magnetite Nanoparticles Stabilized by Poly(vinyl Pyrrolidone)

  • Adrienn J. Szalai
  • George Kaptay
  • Sandor BaranyEmail author


The impact of different amounts of poly(vinyl pyrrolidone) (PVP) on the electrokinetic (ζ) potential and size distribution of magnetite particles, produced by co-precipitation method, in a wide pH interval (2–12) is studied. It has been shown that magnetite particles possess relatively high positive and negative ζpotentials (up to 40 mV) above and below the isoelectric point (IEP), respectively. The IEP of the sample corresponds to pH 6.6 which is shifted to pH 9.1 in 10–2 M KCl solution. Addition of PVP shifts the IEP of the surface to higher pH values and substantially reduces the absolute value of the ζ-potential of both positively (in acidic media) and negatively (alkali media) charged particles as a result of formation of thick polymer layers on the surface. Adsorption of PVP gives a marked rise to the hydrodynamic diameter of magnetite particles but does not change the (monomodal) mode of their size distribution. Also it is shown that PVP can serve as an efficient stabilizer of magnetite particles in a broad pH interval. At the same time in the presence of high amounts (1–2 g PVP/g magnetite) of the polymer, and high pH values (10–11) the partial aggregation of particles takes place.



The research was carried out in the framework of the GINOP-2.3.2-15-2016-00010 “Development of enhanced engineering methods with the aim at utilization of subterranean energy resources” project of the Research Institute of Applied Earth Sciences of the University of Miskolc in the framework of the Széchenyi 2020 Plan, funded by the European Union, co-financed by the European Structural and Investment Funds.


The authors declare that they have no conflicts of interest.


  1. 1.
    Koo, K.N., Ismail, A.F., Othman, M.H.D., Bidin, N., and Rahman, M.A., Malaysian J.Fundam. Appl. Sci., 2019, vol. 15, p. 23.CrossRefGoogle Scholar
  2. 2.
    Evans, B.A., Ronecker, J.C., Han, D.T., Glass, D.R., Train, T.L., and Deatsch, A.E., Mater. Sci. Eng. C, 2016, vol. 62, p. 860.CrossRefGoogle Scholar
  3. 3.
    Gupta, A.K. and Gupta, M., Biomaterials, 2005, vol. 26, p. 3995.CrossRefGoogle Scholar
  4. 4.
    Li, Z., Kawashita, M., Araki, N., Mitsumori, M., Hiraoka, M., and Doi, M., Mater. Sci. Eng. C, 2010, vol. 30, no. 7, p. 990.CrossRefGoogle Scholar
  5. 5.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Van der Elst, L., and Muller, R.N., Chem. Rev., 2008, vol. 108, p. 2064.CrossRefGoogle Scholar
  6. 6.
    Xie, S., Zhang, B., Wang, L., Wang, J., Li, X., Yang, G., and Gao, F., Appl. Surf. Sci., 2015, vol. 326, p. 32.CrossRefGoogle Scholar
  7. 7.
    Sood, A., Arora, V., Shah, J., Kotnala, R.K., and Jain, T.K., J. Exp. Nanosci., 2016, vol. 11, p. 370.CrossRefGoogle Scholar
  8. 8.
    Mortimer, C.J. and Wright, C.J., Biotechnol. J., 2017, vol. 12, p. 1 600 693.CrossRefGoogle Scholar
  9. 9.
    Fan, Y., Lei, C., Chen, Z., Ma, F., and Chen, H., Surf. Coat. Technol., 2012, vol. 213, p. 8.CrossRefGoogle Scholar
  10. 10.
    Mirabello, G., Lenders, J.J., and Sommerdijk, N.A., Chem. Soc. Rev., 2016, vol. 45, p. 5085.CrossRefGoogle Scholar
  11. 11.
    Dubey, V. and Kain, V., Mater. Manuf. Process., 2018, vol. 33, p. 835.CrossRefGoogle Scholar
  12. 12.
    Yazdani, F. and Edrissi, M., Mater. Sci. Eng. B, 2010, vol. 171, p. 86.CrossRefGoogle Scholar
  13. 13.
    Rajput, S. Pittman, Jr., C.U., and Mohan, D., J. Colloid Interface Sci., 2016, vol. 468, p. 334.CrossRefGoogle Scholar
  14. 14.
    Lei, M., Hu, D., Yang, H., and Lei, Z., Surf. Coat. Technol., 2015, vol. 271, p. 2.CrossRefGoogle Scholar
  15. 15.
    Barany, S. and Dekany, I., in Nanoscience: Colloidal and Interfacial Aspects, Starov, V.M., Ed., Boca Raton, FL: CRC, 2010, p. 1017.Google Scholar
  16. 16.
    Illés, E., Szekeres, M., Kupcsik, E., Tóth, I., Farkas, K., Jedlovszky-Hajdú, A., and Tombácz, E., Colloids Surf. A, 2014, vol. 460, p. 429.CrossRefGoogle Scholar
  17. 17.
    Wu, W., He, Q., and Jiang, C., Nanoscale Res. Lett., 2008, vol. 3, p. 397.CrossRefGoogle Scholar
  18. 18.
    Tu, Z., Zhang, B., Yang, G., Wang, M., Zhao, F., Sheng, D., and Wang, J., Colloids Surf. A, 2013, vol. 436, p. 854.CrossRefGoogle Scholar
  19. 19.
    Zhang, B., Tu, Z., Zhao, F., and Wang, J., Appl. Surf. Sci., 2013, vol. 266, p. 375.CrossRefGoogle Scholar
  20. 20.
    Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., and Yang, V.C., Biomaterials, 2011, vol. 32, p. 2183.CrossRefGoogle Scholar
  21. 21.
    Hu, J., Obayemi, J.D., Malatesta, K., Košmrlj, A., and Soboyejo, W.O., Mater. Sci. Eng. C, 2018, vol. 88, p. 32.CrossRefGoogle Scholar
  22. 22.
    Cheng, K.W. and Hsu, S.H., Int. J. Nanomed., 2017, vol. 12, p. 1775.CrossRefGoogle Scholar
  23. 23.
    Cendrowski, K., Sikora, P., Zielinska, B., Horszczaruk, E., and Mijowska, E., Appl. Surf. Sci., 2017, vol. 407, p. 391.CrossRefGoogle Scholar
  24. 24.
    Szalai, J.A., Manivannan, N., and Kaptay, G., Colloids Surf. A, 2019, vol. 568, p. 113.CrossRefGoogle Scholar
  25. 25.
    Huang, H.H., Ni, X.O., Long, L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F., and Xu, G.Q., Langmuir, 1996, vol. 12, p. 909.CrossRefGoogle Scholar
  26. 26.
    Patakfalvi, R., Viranyi, Z., and Dekany, I., Colloid Polym. Sci., 2004, vol. 283, p. 299.CrossRefGoogle Scholar
  27. 27.
    Papp, S. and Dekany, I., Colloid Polym. Sci., 2006, vol. 284, p. 1049.CrossRefGoogle Scholar
  28. 28.
    Zhang, J.Z., Chen, X.Y., Wang, B.N., and Shi, C.W., J. Cryst. Growth, 2008, vol. 310, p. 5453.CrossRefGoogle Scholar
  29. 29.
    Arsalani, N., Fattahi, H., and Nauzarpoor, M., Express Polym. Lett., 2010, vol. 4, p. 329.CrossRefGoogle Scholar
  30. 30.
    Lu, X., Niu, M., Qiao, R., and Gao, M., J. Phys. Chem. B, 2008, vol. 112, p. 14 390.CrossRefGoogle Scholar
  31. 31.
    Khamis, E.A., Rania, A.H., and Mors, E., Egypt.J. Pet., 2018, vol. 27, p. 919.Google Scholar
  32. 32.
    Pandey, G., Singh, S., and Hitkari, G., Int. Nano Lett., 2018, vol. 8, p. 111.CrossRefGoogle Scholar
  33. 33.
    Pasichnyk, M., Kucher, E., and Hyrlya, L., East.-Eur. J. Enterp. Technol., 2018, vol. 3, no. 6, p. 1729.Google Scholar
  34. 34.
    Platonov, B.E., Baran, A.A., and Polischuk, T.A., Adsorptsiya i adsorbenty (Adsorption and Adsorbents), Strazhesko D.N., Ed., 1980, vol. 8, p. 88.Google Scholar
  35. 35.
    Baran, A.A., Polymer-Containing Disperse Systems, Kiev: Naukova Dumka, 1986.Google Scholar
  36. 36.
    Baran, A.A. and Mitina, N.S., Ukr. Chem. J., 1990, vol. 56, p. 578.Google Scholar
  37. 37.
    Csempesz, F. and Rohrsetzer, S., Colloids Surf., 1984, vol. 11, p. 103.CrossRefGoogle Scholar
  38. 38.
    Csempesz, F. and Rohrsetzer, S., Colloids Surf., 1987, vol. 24, p. 101.CrossRefGoogle Scholar
  39. 39.
    Puskas, I. and Csempesz, F., Colloids Surf. B, 2007, vol. 58 p, p. 218.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Adrienn J. Szalai
    • 1
    • 2
  • George Kaptay
    • 3
    • 4
  • Sandor Barany
    • 1
    • 3
    Email author
  1. 1.University of Miskolc, Research Institute of Applied Earth SciencesMiskolc-EgyetemvarosHungary
  2. 2.University of Miskolc, Faculty of Health CareMiskolc-EgyetemvarosHungary
  3. 3.MTA-ME Material Sciences Research Group, University of MiskolcMiskolc-EgyetemvarosHungary
  4. 4.University of Miskolc, Department of NanotechnologyMiskolc-EgyetemvarosHungary

Personalised recommendations