Colloid Journal

, Volume 81, Issue 6, pp 768–772 | Cite as

Hydrogen in Palladium Nanoparticles: Enhancement of Catalytic Activity in the Reaction of Hexacyanoferrate(III) Ion Reduction in Aqueous Solutions

  • R. D. SolovovEmail author
  • A. Yu. Perevoznikova
  • B. G. Ershov


The catalytic activity of a palladium hydrosol has been studied in the reaction of hexacyanoferrate(III) ion reduction with hydrogen. The reaction rate has been found to increase with the degree of palladium nanoparticle saturation with hydrogen. An equation has been derived to describe the dependence of the reaction rate constant on the time of preliminary saturation of the hydrosol with hydrogen. The observed effect seems to be due to the discharge–ionization of hydrogen dissolved in the nanoparticles and an increase in their electron density, which enhance the catalytic activity of the particles.



This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00637 mol_a.


The authors declare that they have no conflict of interest.


  1. 1.
    Astruc, D., Inorg. Chem., 2007, vol. 46, p. 1884.CrossRefGoogle Scholar
  2. 2.
    Bell, A.T., Science (Washington, D. C.), 2003, vol. 299, p. 1688.Google Scholar
  3. 3.
    Semagina, N., Renken, A., and Kiwi-Minsker, L., J. Phys. Chem. C, 2007, vol. 111, p. 13 933.CrossRefGoogle Scholar
  4. 4.
    Wilson, O.M., Knecht, M.R., Garcia-Martinez, J.C., and Crooks, R.M., J. Am. Chem. Soc., 2006, vol. 128, p. 4510.CrossRefGoogle Scholar
  5. 5.
    Dimitratos, N., Porta, F., and Prati, L., Appl. Catal. A, 2005, vol. 291, p. 210.CrossRefGoogle Scholar
  6. 6.
    Hou, Z., Theyssen, N., Brinkmann, A., and Leitner, W., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 1346.CrossRefGoogle Scholar
  7. 7.
    Beller, M., Fischer, H., Kuhlein, K., Reisinger, C.-P., and Herrmann, W.A., J. Organomet. Chem., 1996, vol. 520, p. 257.CrossRefGoogle Scholar
  8. 8.
    Narayanan, R. and El-Sayed, M.A., J. Catal., 2005, vol. 234, p. 348.CrossRefGoogle Scholar
  9. 9.
    Cheong, S., Watt, J.D., and Tilley, R.D., Nanoscale, 2010, vol. 2, p. 2045.CrossRefGoogle Scholar
  10. 10.
    Horinouchi, S., Yamanoi, Y., Yonezawa, T., Mouri, T., and Nishihara, H., Langmuir, 2006, vol. 22, p. 1880.CrossRefGoogle Scholar
  11. 11.
    Yamauchi, M., Ikeda, R., Kitagawa, H., and Takata, M., J. Phys. Chem. C, 2008, vol. 112, p. 3294.CrossRefGoogle Scholar
  12. 12.
    Brodowsky, H., Ber. Bunsen-Ges. Phys. Chem., 1972, vol. 78, p. 740.Google Scholar
  13. 13.
    Ershov, B.G., Solovov, R.D., and Abkhalimov, E.V., Colloid J., 2014, vol. 76, p. 553.CrossRefGoogle Scholar
  14. 14.
    Ershov, B.G. and Solovov, R.D., Catal. Commun., 2018, vol. 103, p. 34.CrossRefGoogle Scholar
  15. 15.
    Solovov, R.D. and Ershov, B.G., Colloid J., 2014, vol. 76, p. 595.CrossRefGoogle Scholar
  16. 16.
    Solovov, R.D., Abkhalimov, E.V., and Ershov, B.G., Colloid J., 2016, vol. 78, p. 685.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. D. Solovov
    • 1
    Email author
  • A. Yu. Perevoznikova
    • 1
  • B. G. Ershov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations