Advertisement

Colloid Journal

, Volume 81, Issue 6, pp 747–753 | Cite as

The Effect of Aqueous–Ethanol Sodium Chloride Solutions on the Selectivity and Electrosurface Properties of an Acetyl Cellulose Membrane

  • K. G. SabbatovskiiEmail author
  • I. P. Sergeeva
  • V. D. Sobolev
Article
  • 4 Downloads

Abstract

The electrokinetic properties and selectivity of an acetyl cellulose membrane with respect to 0.0001 mol/L sodium chloride solutions in water–ethanol mixtures have been studied. The electrical conductivity, streaming potential, and filtration and selectivity characteristics of the membrane have been measured. It has been found that, in solutions with alcohol contents of 4 and 12%, the membrane selectivity with respect to sodium chloride is increased and decreased relative to that in an aqueous solution, respectively. No correlation between the membrane selectivity and its surface charge has been observed. The membrane has been found to possess a slight selectivity (20–26%) with respect to ethanol. It has been hypothesized that the solvation enthalpy of electrolyte ions changes differently in a free solution and membrane pores at different contents of ethanol in the mixtures, thereby affecting the membrane selectivity.

Notes

FUNDING

This work was performed within the framework of a state order to the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Martynov, G.A., Starov, V.M., and Churaev, N.V., Kolloidn. Zh., 1980, vol. 42, p. 489.Google Scholar
  2. 2.
    Derjaguin, B.V., Churaev, N.D., and Martynov, G.A., J. Colloid Interface Sci., 1980, vol. 75, p. 419.CrossRefGoogle Scholar
  3. 3.
    Churaev, N.V. and Derjaguin, B.V., Zh. Vses. Khim. O-va.im.D.I. Mendeleeva, 1987, vol. 32, p. 614.Google Scholar
  4. 4.
    Yaroshchuk, A.E., Adv. Colloid Interface. Sci., 2000, vol. 85, p. 193.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Spiegler, K.S., Trans. Faraday Soc., 1958, vol. 54, p. 1408.CrossRefGoogle Scholar
  6. 6.
    Merten, U., Desalination by Reverse Osmosis, Cambridge: MIT, 1966.Google Scholar
  7. 7.
    Manning, G.S., J. Phys. Chem., 1972, vol. 76, p. 393.CrossRefGoogle Scholar
  8. 8.
    Donnan, F.G., J. Membr. Sci., 1995, vol. 100, p. 45.CrossRefGoogle Scholar
  9. 9.
    Schmid, G. and Schwars, H., Z. Elektrochem., 1952, vol. 52, p. 35.Google Scholar
  10. 10.
    Hoffer, E. and Kedem, O., J. Phys. Chem., 1972, vol. 76, p. 3638.CrossRefGoogle Scholar
  11. 11.
    Bowen, W.R. and Mukhtar, H., J. Membr. Sci., 1996, vol. 112, p. 263.CrossRefGoogle Scholar
  12. 12.
    Bowen, W.R. and Welfoot, J.S., Chem. Eng. Sci., 2002, vol. 57, p. 1121.CrossRefGoogle Scholar
  13. 13.
    Vezzani, D. and Bandini, S., Desalination, 2002, vol. 149, p. 477.CrossRefGoogle Scholar
  14. 14.
    Bandini, S. and Vezzani, D., Chem. Eng. Sci., 2003, vol. 58, p. 3303.CrossRefGoogle Scholar
  15. 15.
    Bandini, S., J. Membr. Sci., 2005, vol. 264, p. 75.CrossRefGoogle Scholar
  16. 16.
    Bruni, L. and Bandini, S., J. Membr. Sci., 2008, vol. 308, p. 136.CrossRefGoogle Scholar
  17. 17.
    Szymczyk, A. and Fievet, P., J. Membr. Sci., 2005, vol. 252, p. 77.CrossRefGoogle Scholar
  18. 18.
    Born, M., Z. Phys., 1920, vol. 1, p. 45.CrossRefGoogle Scholar
  19. 19.
    Stokes, R.H., J. Am. Chem. Soc., 1964, vol. 64, p. 979.CrossRefGoogle Scholar
  20. 20.
    Kornyshev, A.A., Tsitsuashvili, G.I., and Yaroshchuk, A.E., Elektrokhimiya, 1989, vol. 25, p. 1037.Google Scholar
  21. 21.
    Bernal, J.D. and Fowler, R.H., J. Chem. Phys., 1933, vol. 1, p. 515.CrossRefGoogle Scholar
  22. 22.
    Krestov, G.A., Ionnaya sol’vatatsiya (Ion Solvation), Moscow: Nauka, 1987.Google Scholar
  23. 23.
    Skanavi, G.I., Fizika dielektrikov (Physics of Dielectrics), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1949.Google Scholar
  24. 24.
    Ontaki, H., Yamaguchi, T., and Maeda, M., Bull. Chem. Soc. Jpn., 1976, vol. 49, p. 701.CrossRefGoogle Scholar
  25. 25.
    Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Elektrokhimiya, 1990, vol. 26, p. 429.Google Scholar
  26. 26.
    Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Elektrokhimiya, 1990, vol. 26, p. 436.Google Scholar
  27. 27.
    Mishustin, A.I., Mozalevskaya, V.A., and Ponomarev, V.P., Zh. Fiz. Khim., 1989, vol. 63, p. 1345.Google Scholar
  28. 28.
    Manin, N.G. and Korolev, V.P., Russ. J. Phys. Chem., 2002, vol. 76, p. 177.Google Scholar
  29. 29.
    Samoilov, O.Ya., Struktura vodnykh rastvorov elektrolitov i gidratatsiya ionov (The Structure of Electrolyte Aqueous Solutions and Ion Hydration), Moscow: Akad. Nauk SSSR, 1957.Google Scholar
  30. 30.
    Ding, M., Szymczyk, A., and Ghouf, A., Desalination, 2015, vol. 368, p. 76.CrossRefGoogle Scholar
  31. 31.
    Etzler, F.M., J. Colloid Interface Sci., 1983, vol. 92, p. 43.CrossRefGoogle Scholar
  32. 32.
    Ovchinnikov, A.L., Timashev, S.F., and Belyi, F.L., Kinetika diffuzionno-kontroliruemykh protsessov (Kinetics of Diffusion Controlled Processes), Moscow: Khimiya, 1986.Google Scholar
  33. 33.
    Atamanenko, I.D. and Bryk, Yu.I., Kolloidn. Zh., 1991, vol. 53, p. 336.Google Scholar
  34. 34.
    Sun, Q. and Zheng, H.-F., Chin. Phys. Lett., 2006, vol. 23, p. 3022.CrossRefGoogle Scholar
  35. 35.
    Chen, I.T., Sessoms, D.A., Sherman, Z., Choi, E., Vincent, O., and Stroock, A.D., J. Phys. Chem. B, 2016, vol. 120, p. 5209.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ivanova, N.I., Vakar, N.T., and Pertsov, N.V., Kolloidn. Zh., 1987, vol. 49, p. 1348.Google Scholar
  37. 37.
    Chankina, T.I. and Parfenyuk, V.I., Russ. J. Phys. Chem., 2011, vol. 85, p. 1307.CrossRefGoogle Scholar
  38. 38.
    Chankina, T.I. and Parfenyuk, V.I., Russ. J. Electrochem., 2008, vol. 44, p. 1162.CrossRefGoogle Scholar
  39. 39.
    Parfenyuk, V.I., Russ. J. Phys. Chem., 2005, vol. 79, p. 898.Google Scholar
  40. 40.
    Kessler, Yu.M. and Zaitsev, A.L., Sol’vofobnye effekty. Teoriya, eksperiment, praktika (Solvophobic Effects. Theory, Experiment, Practice), Leningrad: Khimiya, 1989.Google Scholar
  41. 41.
    Zhukov, A.N. and Fedorova, I.L., Colloid J., 2004, vol. 66, p. 292.CrossRefGoogle Scholar
  42. 42.
    Kosmulski, M. and Matijevic, E., Langmuir, 1992, vol. 8, p. 1060.CrossRefGoogle Scholar
  43. 43.
    Pihlajamaki, A., Laakso, T., and Manttari, M., Proc. Eng., 2012, vol. 44, p. 1502.CrossRefGoogle Scholar
  44. 44.
    Zhukov, A.N. and Fedorova, I.L., Kolloidn. Zh., 1990, vol. 52, p. 781.Google Scholar
  45. 45.
    Sabbatovskii, K.G., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1991, vol. 53, p. 74.Google Scholar
  46. 46.
    Sabbatovskii, K.G., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1991, vol. 53, p. 403.Google Scholar
  47. 47.
    Rodionova, I.A., Shkol’nikov, E.I., and Volkov, V.V., Colloid J., 2005, vol. 67, p. 469.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. G. Sabbatovskii
    • 1
    Email author
  • I. P. Sergeeva
    • 1
  • V. D. Sobolev
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations