Advertisement

Plasmonic Enhancement of Dye Fluorescence in Polymer/Metal Nanocomposites

  • 7 Accesses

Abstract

The effect of the plasmonic enhancement of dye fluorescence in poly(vinyl butyral) films containing Ag/SiO2 core-shell nanoparticles has been thoroughly studied. It has been shown that the magnitude of this effect can be quite large (up to 5 times) even for a dye having a very high quantum yield (coumarin 7). Therewith, it substantially depends on the size and concentration of Ag/SiO2 particles and the quantum yield of a dye. The results obtained are discussed with involvement of mechanisms reported in the literature for plasmonic enhancement of fluorescence of dyes characterized by high and low quantum yields.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Notes

  1. 1.

    This shell thickness makes it possible to exclude the quenching of dye fluorescence almost completely.

  2. 2.

    For convenience, we use this term for plasmonic NPs as well, although the term “extinction spectra” would be more adequate in this case, because such structures can both absorb and scatter incident radiation.

  3. 3.

    It should be emphasized that no marked change is observed in the molar extinction coefficient of the dye under our experimental conditions.

REFERENCES

  1. 1

    Surface Plasmon Enhanced Coupled and Controlled Fluorescence, Geddes, C.D., Ed., Hoboken: Wiley, 2017.

  2. 2

    Anger, P., Bharadwaj, P., and Novotny, L., Phys. Rev. Lett., 2006, vol. 96, p. 113002.

  3. 3

    Ming, T., Chen, H., Jiang, R., Li, Q., and Wang, J., J. Phys. Chem. Lett., 2012, vol. 3, p. 191.

  4. 4

    Guzatov, D.V., Vaschenko, S.V., Stankevich, V.V., Lunevich, A.Ya., Glukhov, Y.F., and Gaponenko, S.V., J. Phys. Chem. C, 2012, vol. 116, p. 10723.

  5. 5

    Deng, W., Xie, F., Baltar, H.T.M.C.M., and Goldys, E.M., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 15695.

  6. 6

    Li, J.-F., Li, C.-Y., and Aroca, R.F., Chem. Soc. Rev., 2017, vol. 46, p. 3962.

  7. 7

    Jeong, Y., Kook, Y.-M., Lee, K., and Koh, W.-G., Biosens. Bioelectron., 2018, vol. 111, p. 102.

  8. 8

    Gartia, M.R., Eichorst, J.P., Clegg, R.M., and Liu, G.L., Appl. Phys. Lett., 2012, vol. 101, p. 023118.

  9. 9

    Austin, L.A., Kang, B., and El-Sayed, M.A., Nano Today, 2015, vol. 10, p. 542.

  10. 10

    Le, K.Q., Plasmonics, 2015, vol. 10, p. 475.

  11. 11

    Abadeer, N.S., Brennan, M.R., Wilson, W.L., and Murphy, C.J., ACS Nano, 2014, vol. 8, p. 8392.

  12. 12

    Kim, J., Dantelle, G., Revaux, A., Bérard, M., Huignard, A., Gacoin, T., and Boilot, J.-P., Langmuir, 2010, vol. 26, p. 8842.

  13. 13

    Bardhan, R., Grady, N.K., and Halas, N.J., Small, 2008, vol. 4, p. 1716.

  14. 14

    Gill, R. and Le Ru, E.C., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16366.

  15. 15

    Mohan, H., Master Degree Thesis (Univ. of Windsor, Ontario, Canada, 2012).

  16. 16

    Cui, Q., He, F., Li, L., and Möhwald, H., Adv. Colloid Interface Sci., 2014, vol. 207, p. 164.

  17. 17

    Meng, X., Kildishev, A.V., Fujita, K., Tanaka, K., and Shalaev, V.M., Nano Lett., 2013, vol. 13, p. 4106.

  18. 18

    Ning, S., Zhang, N., Dong, H., Hou, X., Zhang, F., and Wu, Z., Opt. Mater. Express, 2018, vol. 8, p. 3014.

  19. 19

    Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhsissen, K., J. Mater. Chem., 1997, vol. 7, p. 293.

  20. 20

    Bastús, N.G., Merkoci, F., Piella, J., and Puntes, V., Chem. Mater., 2014, vol. 26, p. 2836.

  21. 21

    Bai, Z., Chen, R., Si, P., Huang, Y., Sun, H., and Kim, D.-H., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 5856.

  22. 22

    Taniguchi, M. and Lindsey, J.S., Photochem. Photobiol., 2018, vol. 94, p. 290.

  23. 23

    Fita, P., Fedoseeva, M., and Vauthey, E., J. Phys. Chem. A, 2011, vol. 115, p. 2465.

  24. 24

    Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer Science + Business Media, 2006.

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. V.A. Kuz’min (Emanuel Institute of Biochemical Physics, Russian Academy of Sciences) for supplying the sample of eosin B.

FUNDING

This work was performed according to an order of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Correspondence to O. V. Dement’eva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roumyantseva, T.B., Dement’eva, O.V., Protsenko, I.E. et al. Plasmonic Enhancement of Dye Fluorescence in Polymer/Metal Nanocomposites. Colloid J 81, 733–740 (2019). https://doi.org/10.1134/S1061933X19060140

Download citation