Advertisement

Influence of Magnetic Field on Adsorption of Polyacrylic Acid (PAA) on SiO2

  • 16 Accesses

Abstract

The aim of this study was to investigate the influence the magnetic field on the adsorption of polyacrylic acid (PAA) on the silica (SiO2) surface as well as on the zeta potential of the PAA/SiO2 system. The magnetic field influences the amount of PAA adsorbed on silica. The highest adsorption of PAA was observed at pH 9 and the lowest at pH 3. This tendency is opposite to that for the adsorption of PAA on SiO2 in the absence of the magnetic field. This discrepancy occurs because magnetic field generates dipoles in the polymer macromolecules due to the presence of delocalized electrons in the ionized carboxylic groups. Consequently, the PAA molecules undergo polarization, which implies their adsorption on the negatively charged surface of silica. It was also observed that the magnetic field influences the zeta potential of the PAA/SiO2 system by changing the conformation of the adsorbed macromolecules accompanied by changes in the position of the slipping plane.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Fleer, G., Cohen Stuart, M.A., Scheutjens, J.M.H.M., Cosgrove, T., and Vincent, B., Polymers at Interfaces, London: Chapman and Hall, 1993.

  2. 2

    Lyklema, J., Fundamentals of Interface and Colloid Science, vol. II, London: Academic, 1995.

  3. 3

    Holmberg, K., Jönsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, Chichester: Wiley, 2003.

  4. 4

    Chibowski, S., Grządka, E., and Patkowski, J., Colloids Surf., 2008, vol. 326, p. 191.

  5. 5

    Khraisheh, M., Holland, C., Creany, C., Harris, P., and Parolis, L., Int. J. Miner. Process., 2005, vol. 75, p. 197.

  6. 6

    Wang, J. and Somasundaran, P., J. Colloid Interface Sci., 2005, vol. 91, p. 75.

  7. 7

    Chibowski, S., Wiśniewska, M., and Urban, T., Adsorption, 2010, vol. 16, p. 321.

  8. 8

    Wiśniewska, M., J. Am. Ceram. Soc., 2007, vol. 90, p. 3608.

  9. 9

    Xu, J.C., Xin, P.H., Han, Y.B., Wang, P.F., Jin, H.X., Jin, D.F., Peng, X.L., Hong, B., Li, J., Ge, H.L., Zhu, Z.W., and Wang, X.Q., J. Alloys Compd., 2014, vol. 617, p. 622.

  10. 10

    Hao, X., Liu, H., Zhang, G., Zou, H., Zhang, Y., Zhou, M., and Gu, Y., Appl. Clay Sci., 2012, vol. 55, p. 177.

  11. 11

    Wang, R., Yu, J., and Hao, Q., Chem. Eng. Res. Des., 2018, vol. 132, p. 215.

  12. 12

    Xu, J., Xin, P., Gao, Y., Hong, B., Jin, H., Jin, D., Peng, X., Li, J., Gong, J., Ge, H., and Wang, X., Mater. Chem. Phys., 2014, vol. 147, p. 915.

  13. 13

    Křiklavová, L., Truhlář, M., Škodová, P., Lederer, T., and Jirků, V., Bioresour. Technol., 2014, vol. 167, p. 510.

  14. 14

    Peng, Z.G., Hidajat, K., and Uddin, M.S., J. Colloid Interface Sci., 2004, p. 277.

  15. 15

    Jiang, P., Zhang, Y., Zhu, Y., Zhang, W., Mao, Z., and Gao, C., Acta Biomater., 2016, vol. 46, p. 141.

  16. 16

    Patkowski, J., Myśliwiec, D., and Chibowski, S., Mater. Chem. Phys., 2014, vol. 144, p. 451.

  17. 17

    Knez, S. and Pohar, C., J. Colloid Interface Sci., 2005, vol. 281, p. 377.

  18. 18

    Peyratout, C.S. and Dahne, L., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 3762.

  19. 19

    Kenawy, E.R., Worley, S.D., and Broughton, R., Biomacromolecules, 2007, vol. 8, p. 1359.

  20. 20

    Liu, J., Qiao, S.Z., Chen, J.S., Lou, X.W., Xing, X., and Lu, G.Q., Chem. Commun., 2011, vol. 47, p. 12578.

  21. 21

    Kaasalainen, M., Aseyev, V., von Haartman, E., Karaman, D.S., Makila, E., Tenhu, H., Rosenholm, J., and Salonen, J., Nanoscale Res. Lett., 2017, vol. 12, p. 74.

  22. 22

    Vallet-Regí, M., Balas, F., and Arcos, D., Angew. Chem. Int. Ed. Engl., 2007, vol. 46, p. 7548.

  23. 23

    Hartmann, M., Chem. Mater., 2005, vol. 17, p. 4577.

  24. 24

    Crummett, W.B. and Hummel, R.A., J. Am. Water Works Assoc., 1963, vol. 55, p. 209.

  25. 25

    Sueda, M., Katsuki, A., Nonomura, M., Kobayashi, R., and Tanimoto, Y., J. Phys. Chem. C, 2007, vol. 111, p. 14389.

  26. 26

    Chibowski, S., Grzą dka, E., and Patkowski, J., Croat. Chem. Acta, 2009, vol. 82, p. 623.

  27. 27

    Van Ewijk, G.A. and Vorge, G.J., Langmuir, 2002, vol. 18, p. 377.

  28. 28

    Van Ewijk, G.A., Vroege, G.J., and Kuipers, B.W.M., Langmuir, 2002, vol. 18, p. 382.

Download references

Author information

Correspondence to E. Grządka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patkowski, J., Grządka, E. & Matusiak, J. Influence of Magnetic Field on Adsorption of Polyacrylic Acid (PAA) on SiO2. Colloid J 81, 728–732 (2019). https://doi.org/10.1134/S1061933X19060139

Download citation