Advertisement

Colloid Journal

, Volume 81, Issue 6, pp 711–719 | Cite as

Disaggregation of Zinc Tetra(4-Carboxyphenoxy) Phthalocyaninate in Aqueous Solutions of Dodecyl-, Tetradecyl-, and Hexadecyltrimethylammonium Bromides at pH 6–9

  • T. G. MovchanEmail author
  • A. Yu. Chernyad’ev
  • E. V. Plotnikova
  • A. Yu. Tsivadze
  • V. E. Baulin
Article
  • 8 Downloads

Abstract

The aggregation of zinc tetra(4-carboxyphenoxy) phthalocyaninate, ZnPc(COOH)4, in organic solvents and water at different pH values has been analyzed using electronic absorption and luminescence spectroscopies. It has been found that, in aqueous systems at pH 6–9, ZnPc(COOH)4 exists in an aggregated state, while it forms molecular solutions in dimethylformamide and dimethyl sulfoxide. The use of cationic surfactants (dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromides) causes the disaggregation of ZnPc(COOH)4 into individual molecules in aqueous solutions at pH ≥ 6. This opens up possibilities of applying ZnPc(COOH)4 as a preparation for photodynamic therapy in physiological solutions, because each molecule of this compound may participate in the generation of singlet molecular oxygen.

Notes

ACKNOWLEDGMENTS

We are grateful to the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, for letting us use equipment for fluorescence measurements.

FUNDING

This work was performed within the framework of the state order “Physical Chemistry and Technology of High-Efficiency Polyfunctional Materials Based on Macrocyclic Compounds” and supported by the Russian Foundation for Basic Research, project no. 18-03-00743.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Zhou, L., Chen, E., Jin, W., Wang, Y., Zhou, J., and Wei, S., Dalton Trans., 2016, vol. 45, p. 15170.CrossRefGoogle Scholar
  2. 2.
    Kudinova, N.V. and Berezov, T.T., Biomed. Khim., 2009, vol. 55, p. 558.PubMedGoogle Scholar
  3. 3.
    Li, X.-Y., He, X., Ng, A.C.H., Wu, C., and Ng, D.K.P., Macromolecules, 2000, vol. 33, p. 2119.CrossRefGoogle Scholar
  4. 4.
    Ogunsipe, A., Chen, J.-Y., and Nyokong, T., J. Chem., 2004, vol. 28, p. 822.Google Scholar
  5. 5.
    Tsivadze, A.Yu., Usp. Khim., 2004, vol. 73, p. 6.Google Scholar
  6. 6.
    Gol’dshleger, N.F., Baulin, V.E., and Tsivadze, A.Yu., Fizikokhim.Poverkh. Zashch. Mater., 2014, vol. 50, p. 117.Google Scholar
  7. 7.
    Jadhao, M., Mukherjee, S., Joshi, R., Kumar, H., and Ghosh, S.K., RSC Adv., 2016, vol. 6, p. 77161.CrossRefGoogle Scholar
  8. 8.
    Howe, L. and Zhang, J.Z., Photochem. Photobiol., 1998, vol. 67, p. 90.CrossRefGoogle Scholar
  9. 9.
    Kaliya, O.L., Kuznetsova, N.A., Bulgakov, R.A, Solov’eva, L.I., Shevchenko, E.N., Slivka, L.K., and Luk’yanets, E.A., Makrogeterotsikly, 2016, vol. 9, p. 186.Google Scholar
  10. 10.
    Movchan, T.G., Averin, A.A., Baulin, D.V., Plotnikova, E.V., Baulin, V.E., and Tsivadze, A.Yu., Colloid J., 2018, vol. 80, p. 501.CrossRefGoogle Scholar
  11. 11.
    Xia, L., Kong, X., Liu, X., Tu, L., Zhang, Y., Chang, Y., Liu, K., Shen, D., Zhao, H., and Zhang, H., Biomaterials, 2014, vol. 35, p. 4146.CrossRefGoogle Scholar
  12. 12.
    Movchan, T.G., Chernyad’ev, A.Yu., Averin, A.A., Plotnikova, E.V., Baulin, V.E., and Tsivadze, A.Yu., Colloid J., 2018, vol. 80, p. 667.CrossRefGoogle Scholar
  13. 13.
    Humphry-Baker, R., Gratzel, M., Wohrle, D., Schnurpfeil, G., Schneider, G., Hirth, A., and Trombach, N., J. Porphyr. Phthalocyanines, 1999, vol. 3, p. 230.CrossRefGoogle Scholar
  14. 14.
    Raevskii, P.M., Ross. Khim. Zh., 2002, vol. 46, p. 90.Google Scholar
  15. 15.
    Movchan, T.G., Rusanov, A.I., and Plotnikova, E.V., Colloid J., 2016, vol. 78, p. 785.CrossRefGoogle Scholar
  16. 16.
    Movchan, T.G., Plotnikova, E.V., and Us’yarov, O.G., Colloid J., 2013, vol. 75, p. 319.CrossRefGoogle Scholar
  17. 17.
    Lebedeva, N.Sh., Yurina, E.S., Gubarev, A.Yu., and Maizlish, V.E., Bioorg. Khim., 2016, vol. 42, p. 36.Google Scholar
  18. 18.
    Lakowics, J., Principles of Fluorescence Spectroscopy, New York: Plenum, 1983.CrossRefGoogle Scholar
  19. 19.
    Lebedeva, N.Sh., Popova, T.E., Mal’kova, E.A., and Gubarev, E.A., Russ. J. Phys. Chem., 2013, vol. 87, p. 2030.CrossRefGoogle Scholar
  20. 20.
    Berezin, B.D. and Berezin, D.B., Kurs sovremennoi organicheskoi khimii (Course of Advanced Organic Chemistry), Moscow: Vysshaya Shkola, 1999.Google Scholar
  21. 21.
    Blinova, I.A., Vasil’ev, V.V., and Shagisultanova, G.A., Zh. Fiz. Khim., 1994, vol. 68, p. 841.Google Scholar
  22. 22.
    Cotton, F. and Wilkinson, G., Advanced Inorganic Chemistry. A Comprehensive Text, New York: Springer, 1972, Part 3.Google Scholar
  23. 23.
    Dem’yantseva, E.Yu. and Kopnina, R.A., Solyubilizatsiya v rastvorakh poverkhnostno-aktivnykh veshchestv: uchebno-metodicheskoe posobie (Solubilization in Surfactant Solutions: A Methodic Manual), St. Petersburg: SPbGTURP, 2015.Google Scholar
  24. 24.
    Priev, A., Zalipsky, S., Cohen, R., and Barenholz, Y., Langmuir, 2002, vol. 18, p. 612.CrossRefGoogle Scholar
  25. 25.
    Harriman, A., J. Chem. Soc., Faraday Trans., 1981, vol. 77, p. 1695.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. G. Movchan
    • 1
    Email author
  • A. Yu. Chernyad’ev
    • 1
  • E. V. Plotnikova
    • 1
  • A. Yu. Tsivadze
    • 1
  • V. E. Baulin
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations