Advertisement

Colloid Journal

, Volume 81, Issue 6, pp 662–669 | Cite as

Templateless Synthesis of Organosilica Nanotoroids. The Effect of Precursor Concentration

  • M. E. KartsevaEmail author
  • O. V. Dement’evaEmail author
  • A. V. Zaitseva
  • T. B. Roumyantseva
  • N. A. Salavatov
  • V. M. Rudoy
Article
  • 7 Downloads

Abstract

The features of (γ-mercaptopropyl)trimethoxysilane (MPTMS) hydrolytic condensation in alkaline aqueous solutions have been studied. The interrelation between the process time, MPTMS concentration, and structure-related morphological characteristics of the obtained organosilica (silsesquioxane) particles has been determined. It has been shown that toroidal particles are mainly formed at low precursor concentrations (≤2.5 mM) in a solution. The formation kinetics of such nanotoroids has been analyzed, and preliminary data have been obtained on the mechanism of this process. These data have been discussed taking into account the information available from the literature on the structure of silsesquioxanes and the role of disulfide bonds in the formation of anisotropic particles of these compounds.

Notes

FUNDING

This work was performed within the framework of a state order to the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interes-t.

REFERENCES

  1. 1.
    Croissant, J.G., Cattoën, X., Durand, J.-O., Man, M.W.C., and Khashab, N.M., Nanoscale, 2016, vol. 8, p. 19 945.CrossRefGoogle Scholar
  2. 2.
    Croissant, J.G., Fatieiev, Y., and Khashab, N.M., Adv. Mater., 2017, vol. 29, p. 1 604 634.Google Scholar
  3. 3.
    Kowalewska, A., Curr. Org. Chem., 2017, vol. 21, p. 1243.CrossRefGoogle Scholar
  4. 4.
    Issa, A.A. and Luyt, A.S., Polymers, 2019, vol. 11, p. 537.CrossRefGoogle Scholar
  5. 5.
    Shah, K.W., PhD Thesis (National Univ. of Singapore, 2011).Google Scholar
  6. 6.
    Shah, K.W., Sreethawong, T., Liu, S.-H., Zhang, S.-Y., Tan, L.S., and Han, M.-Y., Nanoscale, 2014, vol. 6, p. 11273.CrossRefGoogle Scholar
  7. 7.
    Lo, C.-H. and Hu, T.-M., Soft Matter, 2017, vol. 13, p. 5950.CrossRefGoogle Scholar
  8. 8.
    Johnston, A.P.R., Battersby, B.J., Lawrie, G.A., and Trau, M., Chem. Commun., 2005, p. 848.Google Scholar
  9. 9.
    Miller, C.R., Vogel, R., Surawski, P.P.T., Jack, K.S., Corrie, S.R., and Trau, M., Langmuir, 2005, vol. 21, p. 9733.CrossRefGoogle Scholar
  10. 10.
    Miller, C.R., Vogel, R., Surawski, P.P.T., Corrie, S.R., Ruhmann, A., and Trau, M., Chem. Commun., 2005, p. 4783.Google Scholar
  11. 11.
    Vogel, R., Surawski, P.P.T., Littleton, B.N., Miller, C.R., Lawrie, G.A., Battersby, B.J., and Trau, M., J. Colloid Interface Sci., 2007, vol. 310, p. 144.CrossRefGoogle Scholar
  12. 12.
    Nakamura, M. and Ishimura, K., J. Phys. Chem. C, 2007, vol. 111, p. 18892.CrossRefGoogle Scholar
  13. 13.
    Nakamura, M. and Ishimura, K., Langmuir, 2008, vol. 24, p. 5099.CrossRefGoogle Scholar
  14. 14.
    Nakamura, M., Ozaki, S., Abe, M., Doi, H., Matsumoto, T., and Ishimura, K., Colloids Surf. B, 2010, vol. 79, p. 19.CrossRefGoogle Scholar
  15. 15.
    Lee, Y.-G., Park, J.-H., Oh, C., Oh, S.-G., and Kim, Y.C., Langmuir, 2007, vol. 23, p. 10875.CrossRefGoogle Scholar
  16. 16.
    Oh, C., Shim, S.-B., Lee, Y.-G., and Oh, S.-G., Mater. Res. Bull., 2011, vol. 46, p. 2064.CrossRefGoogle Scholar
  17. 17.
    Mangos, D.N., Nakanishi, T., and Lewis, D.A., Sci. Technol. Adv. Mater., 2014, vol. 15, p. 1.Google Scholar
  18. 18.
    Lu, Z., Sun, L., Nguyen, K., Gao, C., and Yin, Y., Langmuir, 2011, vol. 27, p. 3372.CrossRefGoogle Scholar
  19. 19.
    Kartseva, M.E., Dement’eva, O.V., Zaitseva, A.V., and Rudoy, V.M., Colloid J., 2018, vol. 80, p. 346.CrossRefGoogle Scholar
  20. 20.
    Holder, S.J. and Sommerdijk, N.A.J.M., Polym. Chem., 2011, vol. 2, p. 1018.CrossRefGoogle Scholar
  21. 21.
    Pochan, D.J., Chen, Z.Y., Cui, H.G., Hales, K., Qi, K., and Wooley, K.L., Science, 2004, vol. 306, p. 94.CrossRefGoogle Scholar
  22. 22.
    Jiang, Y., Zhu, J.T., Jiang, W., and Liang, H.J., J. Phys. Chem. B, 2005, vol. 109, p. 21549.CrossRefGoogle Scholar
  23. 23.
    Kim, Y., Li, W., Shin, S., and Lee, M., Acc. Chem. Res., 2013, vol. 46, p. 2888.CrossRefGoogle Scholar
  24. 24.
    Luo, H., Santos, J.L., and Herrera-Alonso, M., Chem. Commun., 2014, vol. 50, p. 536.CrossRefGoogle Scholar
  25. 25.
    Wang, Z., Sun, F., Huang, S., and Yan, C., J. Polym. Sci. B: Polym. Phys., 2016, vol. 54, p. 1450.CrossRefGoogle Scholar
  26. 26.
    Yang, C., Gao, L., Lin, J., Wang, L., Cai, C., Wei, Y., and Li, Z., Angew. Chem., Int. Ed. Engl., 2017, vol. 56, p. 5546.CrossRefGoogle Scholar
  27. 27.
    Zhu, W., Li, B., Bi, L., Wang, S., Zhuang, W., Li, Y., and Yang, Y., Chin. J. Chem., 2012, vol. 30, p. 144.CrossRefGoogle Scholar
  28. 28.
    Maggini, L., Travaglini, L., Cabrera, I., Castro-Hartmann, P., and De Cola, L., Chem.-Eur. J., 2016, vol. 22, p. 3697.CrossRefGoogle Scholar
  29. 29.
    Bellamy, L., The Infrared Spectra of Complex Molecules, London: Methuen, 1957.Google Scholar
  30. 30.
    Wang, X., Gao, P., Yang, Y., Guo, H., and Wu, D., Nat. Commun., 2018, vol. 9, p. 2772.CrossRefGoogle Scholar
  31. 31.
    Koval’, I.V., Russ. J. Org. Chem., 2007, vol. 43, p. 319.CrossRefGoogle Scholar
  32. 32.
    Unno, M., Suto, A., and Matsumoto, T., Russ. Chem. Rev., 2013, vol. 82, p. 289.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. E. Kartseva
    • 1
    Email author
  • O. V. Dement’eva
    • 1
    Email author
  • A. V. Zaitseva
    • 1
  • T. B. Roumyantseva
    • 1
  • N. A. Salavatov
    • 1
  • V. M. Rudoy
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations