Colloid Journal

, Volume 81, Issue 6, pp 650–661 | Cite as

Thermodynamic Properties of Water−Ethanol Films Formed between Hydrophobic Surfaces. Part I.

  • Jan Christer ErikssonEmail author
  • Xia Zhenbo
  • Roe-Hoan Yoon


Based on thermodynamic reasoning we claim that long-ranged, solvophobic surface forces may arise in thin films of associated liquids due to formation of linear aggregates composed of spheroidal, nano-sized molecular clusters. Supposedly, these aggregates can span a narrow gap between two hydrofobic solid surfaces submerged in the film-forming liquid phase, thus giving rise to attraction. Such aggregates are apparantly generated in thin water and water–ethanol films, especially below room temperature and for high mole fractions of water or ethanol, respectively. The surface force recorded for a pure water with film thickness larger than about 20 nm are found to be proportional to the number of bridging cluster aggregates per unit area that cross the mid-plane of a thin film. Moreover, the long-range-ness (decay length) was seen to depend inversely on the work of formation of the elongated middle part of a bridging cluster aggregate. Furthermore, addition of small amounts of ethanol rapidly reduce the surface force generated for pure water films with thickness of a few hundred nm.



The authors wishes to gratefully thank Prof. Ulf Henriksson , KTH, Stockholm, Sweden, for perusing an early version of this paper, and Prof. Anatoly I. Rusanov, Saint Petersburg, for valuable advice concerning some theoretical matters.


The authors declare that they have no conflicts of interest.


  1. 1.
    Eriksson, J.C., Ljunggren, S., and Claesson, P.M., J. Chem. Soc., Faraday Trans. 2, 1989, vol. 85, p. 163.CrossRefGoogle Scholar
  2. 2.
    Wang, J.L., Yoon, R.H., and Eriksson, J.C., J. Colloid Interface Sci., 2011, vol. 364, p. 257.PubMedCrossRefGoogle Scholar
  3. 3.
    Considine, R.F. and Drummond, C.J., Langmuir, 2000, vol. 16, p. 631.CrossRefGoogle Scholar
  4. 4.
    Parker, J.L. and Claesson, P.M., Langmuir, 1992, vol. 8, p. 757.CrossRefGoogle Scholar
  5. 5.
    Wang, J.L., Li, Z.L., Yoon, R.H., and Eriksson, J.C., J. Colloid Interface Sci., 2012, vol. 379, p. 114.PubMedCrossRefGoogle Scholar
  6. 6.
    Li, Z. and Yoon, R.-H., Langmuir, 2014, vol. 30, p. 13312.PubMedCrossRefGoogle Scholar
  7. 7.
    Israelachvili, J. and Pashley, R., Nature (London), 1982, vol. 300, p. 341.PubMedCrossRefGoogle Scholar
  8. 8.
    Hammer, M.U., Anderson, T.H., Chaimovich, A., Shell, M.S., and Israelachvili, J., Faraday Discuss., 2010, vol. 146, p. 299.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Meyer, E.E., Rosenberg, K.J., and Israelachvili, J., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, p. 15739.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Christenson, H.K. and Claesson, P.M., Adv. Colloid Interface Sci., 2001, vol. 91, p. 391.CrossRefGoogle Scholar
  11. 11.
    Eriksson, J.C. and Yoon, R.-H., in Froth Flotation: A Century of Innovation, Fuerstenau M.C., Jameson G.J., and Yoon, R.-H., Eds., Society for Mining, Metallurgy and Exploration (SME), 2007, p. 133.Google Scholar
  12. 12.
    Eriksson, J.C. and Yoon, R.-H., in Colloid Stability: The Role of Surface Forces, Part I, Tadros, T.F., Ed., 2007, vol. 1, p. 99.Google Scholar
  13. 13.
    Boinovich, L. and Emelyanenko, A., in Colloid Stability: The Role of Surface Forces, Part I, Tadros, T.F., Ed., 2007, vol. 1, p. 133.Google Scholar
  14. 14.
    Attard, P., Adv. Colloid Interface Sci., 2003, vol. 104, p. 75.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kralchevsky, P.A., Langmuir, 1996, vol. 12, p. 5951.CrossRefGoogle Scholar
  16. 16.
    Ryan, W.L. and Hemmingsen, E.A., J. Colloid Interface Sci., 1993, vol. 15, p. 312.CrossRefGoogle Scholar
  17. 17.
    Peng, H., Birkett, G.R., and Nguyen, A.V., Adv. Colloid Interface Sci., 2015, vol. 222, p. 573.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhenbo, X., PhD Thesis (Virginia Inst. of Technology, USA, 2015).Google Scholar
  19. 19.
    Eriksson, J.C., Surf. Sci., 1969, vol. 14, p. 221.CrossRefGoogle Scholar
  20. 20.
    Derjaguin, B., Kolloid-Z., 1934, vol. 69, p. 155.CrossRefGoogle Scholar
  21. 21.
    Derjaguin, B.V., and Churaev, N.V., Colloids Surf., 1989, vol. 41, p. 223.CrossRefGoogle Scholar
  22. 22.
    Israelachvili, J., Acc. Chem. Res., 1987, vol. 20, p. 415.CrossRefGoogle Scholar
  23. 23.
    Chen, H., Gan, W., Wu, B.-H., Wu, D., Guo, Y., and Wang, H.-F., J. Phys. Chem. B, 2005, vol. 109, p. 8053.PubMedCrossRefGoogle Scholar
  24. 24.
    Marcelja, S. and Radic, N., Chem. Phys. Lett., 1976, vol. 42, p. 129.CrossRefGoogle Scholar
  25. 25.
    Evans, R., Lectures at 3rd Warsaw School of Statistical Physics, Kazimierz Polny, 2009, p. 21.Google Scholar
  26. 26.
    Besseling, N.A.M., Langmuir, 1997, vol. 13, p. 2113.CrossRefGoogle Scholar
  27. 27.
    Teschke, O. and De Souza, E., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3856.PubMedCrossRefGoogle Scholar
  28. 28.
    Wernet, P., Nordlund, D., Bergmann, U., Cavalleri, M., Odelius, M., Ogasawara, H., Näslund, L.A., Hirsch, T.K., Ojamäe, L., Glatzel, P., Pettersson, L.G.M., and Nilsson, A., Science (Washington, D. C.), 2004, vol. 304, p. 995.CrossRefGoogle Scholar
  29. 29.
    Huang, C., Wikfeldt, K.T., Tokushima, T., Nordlund, D., Harada, Y., Bergmann, U., Niebuhr, M., Weiss, T.M., Horikawa, Y., Leetma, M., Ljungberg, M.P., Takahashi, O., Lenz, A., Ojamäe, L., Lyubartsev, A.P., Shin, S., Pettersson, L.G.M., and Nilsson, A., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, p. 15214.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Eriksson, J.C. and Henriksson, U., Langmuir, 2007, vol. 23, p. 10026.PubMedCrossRefGoogle Scholar
  31. 31.
    Eriksson, J.C. and Henriksson, U., Langmuir, 2013, vol. 29, p. 4789.PubMedCrossRefGoogle Scholar
  32. 32.
    Miklavic, S.J., Chan, D.Y.C., White, L.R., and Healy, T.W., J. Phys. Chem., 1994, vol. 98, p. 9022.CrossRefGoogle Scholar
  33. 33.
    Aratono, M., Toyomasu, T., Villeneuve, M., Uchiso-no, Y., Takiue, T., Motomura, K., and Ikeda, N., J. Colloid Interface Sci., 1997, vol. 191, p. 146.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nishi, N., Takahashi, S., Matsumoto, M., Tanaka, A., Muraya, K., Takamuku, T., and Yamaguchi, T., J. Phys. Chem., 1995, vol. 99, p. 462.CrossRefGoogle Scholar
  35. 35.
    Hogg, R., Healy, T.W., and Fuerstenau, D.W., Trans. Faraday Soc., 1996, vol. 62, p. 1638.CrossRefGoogle Scholar
  36. 36.
    Dalmolin, I., Skovroinski, E., Biasi, A., Corazza, M.L., Dariva, C., and Olivira, J.V., Fluid Phase Equilib., 2006, vol. 245, p. 193.CrossRefGoogle Scholar
  37. 37.
    Ludwig, R., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 1808.CrossRefGoogle Scholar
  38. 38.
    Chaplin, M.F., Biophys. Chem., 1999, vol. 83, p. 211.CrossRefGoogle Scholar
  39. 39.
    Hill, T.L., Thermodynamics of Small Systems, Part II, New York: W.A. Benjamin, 1964, p. 77.Google Scholar
  40. 40.
    Eriksson, J.C. and Ljunggren, S., J. Chem. Soc., Faraday Trans., 1985, vol. 81, p. 1209.CrossRefGoogle Scholar
  41. 41.
    Kappl, M. and Butt, H.J., Part. Part. Syst. Charact., 2002, vol. 19, p. 129.CrossRefGoogle Scholar
  42. 42.
    Raiteri, R., Preuss, M., Grattarola, M., and Butt, H.J., Colloids Surf. A, 1998, vol. 136, p. 191.CrossRefGoogle Scholar
  43. 43.
    Pan, L., Jung, S., and Yoon, R.H., J. Colloid Interface Sci., 2011, vol. 361, p. 321.PubMedCrossRefGoogle Scholar
  44. 44.
    Li, Z. and Yoon, R.-H., Miner. Eng., 2012, vols. 36–38, p. 126.Google Scholar
  45. 45.
    Pashley, R.M., J. Phys. Chem. B, 2003, vol. 107, p. 1714.CrossRefGoogle Scholar
  46. 46.
    Meyer, E.E., Lin, O., and Israelachvili, J.N., Langmuir, 2005, vol. 21, p. 256.PubMedCrossRefGoogle Scholar
  47. 47.
    Shchukarev, S.A. and Tolmacheva, T.A., Translated from Zh.Strukt. Khim., 1968, vol. 9, p. 21.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Jan Christer Eriksson
    • 1
    Email author
  • Xia Zhenbo
    • 2
  • Roe-Hoan Yoon
    • 2
  1. 1.Division of Surface and Corrosion Science, KTH Royal Institute of TechnologyStockholmSweden
  2. 2.Department of Material Science and Engineering and Department of Mining and Minerals Engineering, Virginia TechBlacksburgUSA

Personalised recommendations