Colloid Journal

, Volume 81, Issue 6, pp 642–649 | Cite as

Features of Electrical Double Layers Formed Around Strongly Charged Nanoparticles Immersed in an Electrolyte Solution. The Effect of Ion Sizes

  • A. I. DolinnyiEmail author


Using the modified Poisson–Boltzmann (PB) theory, which includes restrictions on the maximum attainable concentration of ionic species in a solution Cmax determined by their effective sizes, the distributions of electrostatic potential φ(r) and ion concentration near a spherical nanoparticle with radius a immersed in a 1 : 1 electrolyte solution have been studied under the conditions of constant surface charge density σs. For weakly charged particles, the φ(r) profiles are almost independent of Cmax and coincide with the profile obtained in terms of the classical PB model. Surface potential |φs| gradually increases with a rise in |σs|. Far from the particle, when the potential becomes lower than its thermal value \({{\varphi }_{{\text{T}}}} = \frac{{kT}}{e}\) (k is the Boltzmann constant, T is the temperature, and e is the elementary charge), the potential decreases exponentially irrespective of the counterion sizes: \(\psi \left( r \right) = \frac{{\varphi \left( r \right)}}{{{{\varphi }_{{\text{T}}}}}} = {{\psi }_{{{\text{eff}}}}}\frac{a}{r}\exp \left( { - \kappa \left( {r - a} \right)} \right),\) where r is the distance from the particle center and κ is the reciprocal Debye radius. According to the classical PB theory, the growth of the surface charge leads to the saturation of \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|~\left( { \to 4} \right),\) with the value of \(\left| {{{\psi }_{{\text{s}}}}} \right|\) obtained by solving the nonlinear PB equation being higher than \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|.\) In the modified PB theory, which takes into account the size of electrolyte ions in the simplest form, this effect of saturation is absent. Now, \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|\) depends on both the value of the surface charge and the sizes of counterions. Moreover, at a large size of counterions, \(\left| {{{\psi }_{{{\text{eff}}}}}} \right|\) substantially exceeds the corresponding value obtained by solving the nonlinear modified PB equation. The difference between the electrical double layer properties obtained by solving the classical and modified PB equations directly follows from the fact that the modified theory predicts the appearance of a condensed layer at a particle surface, with the concentration of counterions in this layer being equal to Cmax. Therewith, the thickness of the layer grows with increasing |σs| (at a constant size of the ions) and the size of the ions (at constant σs).



This work was performed within the framework of a state order to the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.


  1. 1.
    Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, New York: Elsevier, 1948.Google Scholar
  2. 2.
    Delahay, P., Double Layer and Electrode Kinetics, New York: Wiley, 1965.Google Scholar
  3. 3.
    Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces), New York: Consultants Bureau, 1987.Google Scholar
  4. 4.
    Andelman, D., in Handbook of Biological Physics, Lipowsky, R. and Sackmann, E., Eds., Amsterdam: Elsevier Science, 1995, vol. 1, Chap. 12.Google Scholar
  5. 5.
    Levin, Y., Rep. Prog. Phys., 2002, vol. 65, p. 1577.CrossRefGoogle Scholar
  6. 6.
    Lyklema, J., Fundamentals of Interface and Colloid Science, Amsterdam: Elsevier Academic, 2005.Google Scholar
  7. 7.
    Ohshima, H., in Nanolayer Research: Methodology and Technology for Green Chemistry, Amsterdam: Elsevier, 2017, Chap. 2.Google Scholar
  8. 8.
    Gisler, T., Schulz, S.F., Borkovec, M., Sticher, H., Schurtenberger, P., D’Aguanno, B., and Klein, R., J. Chem. Phys., 1994, vol. 101, p. 9924.CrossRefGoogle Scholar
  9. 9.
    Evers, M., Garbow, N., Hessinger, D., and Palberg, T., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 57, p. 6774.CrossRefGoogle Scholar
  10. 10.
    Fernandez-Nieves, A., Fernandez-Barbero, A., and Nieves, F.J., Langmuir, 2000, vol. 16, p. 4090.CrossRefGoogle Scholar
  11. 11.
    Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., Adv. Colloid Interface Sci., 2002, vol. 95, p. 295.CrossRefGoogle Scholar
  12. 12.
    Oosawa, F., Polyelectrolytes, New York: Marcel Dekker, 1971.Google Scholar
  13. 13.
    Manning, G.S., J. Chem. Phys., 1969, vol. 51, p. 924.CrossRefGoogle Scholar
  14. 14.
    Manning, G.S., Ber. Bunsen-Ges. Phys. Chem., 1996, vol. 100, p. 909.CrossRefGoogle Scholar
  15. 15.
    Belloni, L., Colloids Surf. A, 1998, vol. 140, p. 227.CrossRefGoogle Scholar
  16. 16.
    Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., and Pincus, P., J. Chem. Phys., 1984, vol. 80, p. 5776.CrossRefGoogle Scholar
  17. 17.
    Manning, G.S., J. Phys. Chem. B, 2007, vol. 111, p. 8554.CrossRefGoogle Scholar
  18. 18.
    Ramanathan, G.V., J. Chem. Phys., 1988, vol. 88, p. 3887.CrossRefGoogle Scholar
  19. 19.
    Attard, P., J. Phys. Chem., 1995, vol. 99, p. 14174.CrossRefGoogle Scholar
  20. 20.
    Levin, Y., Barbosa, M.C., and Tamashiro, M.N., Europhys. Lett., 1998, vol. 41, p. 123.CrossRefGoogle Scholar
  21. 21.
    Bocquet, L., Trizac, E., and Aubouy, M., J. Chem. Phys., 2002, vol. 117, p. 8138.CrossRefGoogle Scholar
  22. 22.
    Crocker, J.C. and Grier, D.G., Phys. Rev. Lett., 1994, vol. 73, p. 352.CrossRefGoogle Scholar
  23. 23.
    Palberg, T., Monch, W., Bitzer, F., Piazza, R., and Bellini, T., Phys. Rev. Lett., 1995, vol. 74, p. 4555.CrossRefGoogle Scholar
  24. 24.
    Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 574.CrossRefGoogle Scholar
  25. 25.
    Quesada-Perez, M., Callejas-Fernandez, J., and Hidalgo-Alvarez, R., J. Colloid Interface Sci., 2001, vol. 233, p. 280.CrossRefGoogle Scholar
  26. 26.
    Gutsche, C., Keyser, U.F., Kegler, K., Kremer, F., and Linse, P., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2007, vol. 76, 031403.CrossRefGoogle Scholar
  27. 27.
    Antypov, D., Barbosa, M.C., and Holm, C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2005, vol. 71, 061106.CrossRefGoogle Scholar
  28. 28.
    Biesheuvel, P.M. and Van Soestbergen, M., J. Colloid Interface Sci., 2007, vol. 316, p. 490.CrossRefGoogle Scholar
  29. 29.
    Lue, L., Zoeller, N., and Blankschtein, D., Langmuir, 1999, vol. 15, p. 3726.CrossRefGoogle Scholar
  30. 30.
    López-García, J.J., Aranda-Rascon, M.J., and Horno, J., J. Colloid Interface Sci., 2007, vol. 316, p. 196.CrossRefGoogle Scholar
  31. 31.
    López-García, J.J., Aranda-Rascon, M.J., Grosse, C., and Horno, J., J. Phys. Chem. B, 2010, vol. 114, p. 7548.CrossRefGoogle Scholar
  32. 32.
    Borukhov, I., J. Polym. Sci. B: Polym. Phys., 2004, vol. 42, p. 3598.CrossRefGoogle Scholar
  33. 33.
    Borukhov, I., Andelman, D., and Orland, H., Electrochim. Acta, 2000, vol. 46, p. 221.CrossRefGoogle Scholar
  34. 34.
    López-García, J.J., Horno, J., and Grosse, C., Curr. Opin. Colloid Interface Sci., 2016, vol. 24, p. 23.CrossRefGoogle Scholar
  35. 35.
    Dolinnyi, A.I., Colloid J., 2018, vol. 80, p. 663.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations