Colloid Journal

, Volume 81, Issue 6, pp 804–816 | Cite as

Specific Features of the Rheological Behavior of a Protic Oligomeric Ionic Liquid of Cationic Type with Basic Sites of Two Types in the Region of the Solid–Liquid Transition

  • V. F. ShumskiiEmail author
  • V. V. Shevchenko
  • M. A. Gumennaya
  • I. P. Getmanchuk
  • A. V. Stryutskii
  • N. S. Klimenko
  • V. V. Davidenko
  • T. D. Ignatova
  • A. P. Syrovets
  • L. A. Vorontsova


The structure and rheological behavior of a reactive oligomeric ionic liquid (OIL) have been studied. The OIL has a linear structure and contains ionic fragments of two types at both ends of oligo(ethylene oxide) chain. The ionic fragments are represented by secondary amino groups and nitrogen-containing heterocycles protonated with ethane sulfonic acid. The results obtained using rotational rheometry in different dynamic regimes indicate that, in the linear region of deformation at temperatures T < 20°C, this OIL exhibits the behavior of an elastic solidlike body. The components of the complex shear modulus (G ' ~ 107 Pa and G '' ~ 106 Pa) are independent of frequency ω and temperature. At the same time, its complex dynamic viscosity is independent of temperature and decreases with an increase in ω (in logarithmic coordinates, the dependence is linear and has a slope close to unity, which is a formal sign of the existence of a yield stress). At T ≤ 20°C in the nonlinear region of periodic deformation, a crossover is observed in the amplitude dependences of G ' and G '', which indicates that the critical shear stress is reached. As a result, the OIL passes into the liquid state (G '' > G '). The boundary, which is located at nearly 30°C, is characterized by equality between G ' and G '' in a wide range of strain amplitudes. The structural transformations induced by thermal and mechanical energies have been explained using a hypothesis of the existence of micellar structures and a “normal micelle–reverse micelle” transition in the OIL, as well as changes in micelle shapes. The analysis of the temperature dependences for the viscoelastic characteristics and scattered light intensity, as well as the data of DSC and optical microscopy, has led to the hypothesis that at, T = 21–28°C, the OIL may occur in an ordered state similar to the liquid-crystalline one.



We are grateful to V.G. Kulichikhin, corresponding member of the Russian Academy of Sciences, for valuable remarks and useful discussion of the obtained results.


The authors declare that they have no conflict of interest.


  1. 1.
    Ionic Liquids: Theory, Properties, New Approaches, Kokorin, A., Ed., Croatia: In Tech, 2011.Google Scholar
  2. 2.
    Tarasova, N.P., Smetannikov, Yu.V., and Zanin, A.A., Usp. Khim., 2010, vol. 79, p. 516.Google Scholar
  3. 3.
    Zherenkova, L.V. and Komarov, P.V., Polym. Sci., Ser. A, 2014, vol. 56, p. 383.CrossRefGoogle Scholar
  4. 4.
    Smirnova, N.A., Usp. Khim., 2005, vol. 74, p. 138.CrossRefGoogle Scholar
  5. 5.
    Rusanov, A.I., Mitselloobrazovanie v rastvorakh po-verkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.Google Scholar
  6. 6.
    Rusanov, A.I., Colloid J., 2014, vol. 76, p. 121.CrossRefGoogle Scholar
  7. 7.
    Rusanov, A.I., Shchekin, A.K., and Kuni, F.M., Colloid J., 2009, vol. 71, p. 816.CrossRefGoogle Scholar
  8. 8.
    Rusanov A.I., Shchekin A.K., and Kuni F.M., Colloid J., 2009, vol. 71, p. 826.CrossRefGoogle Scholar
  9. 9.
    Kuznetsov, V.S., Blinov, A.P., Usol’tseva, N.V., and Anan’eva, G.A., Colloid J., 2007, vol. 69, p. 627.CrossRefGoogle Scholar
  10. 10.
    Kuznetsov, V.S., Usol’tseva, N.V., Zherdev, V.P., and Bykova, V.V., Colloid J., 2009, vol. 71, p. 784.CrossRefGoogle Scholar
  11. 11.
    Kuznetsov, V.S., Usol’tseva, N.V., Zherdev, V.P., and Bykova, V.V., Colloid J., 2010, vol. 72, p. 216.CrossRefGoogle Scholar
  12. 12.
    Safonova, E.A., Alexeeva, M.V., and Smirnova, N.A., Colloid J., 2009, vol. 71, p. 717.CrossRefGoogle Scholar
  13. 13.
    Maeda, H., J. Phys. Chem. B, 1997, vol. 101, p. 7378.CrossRefGoogle Scholar
  14. 14.
    Ikeda, S., Tsunoda, M., and Maeda, H., J. Colloid Interface Sci., 1979, vol. 70, p. 448.CrossRefGoogle Scholar
  15. 15.
    Kaimoto, H., Shoho, K., Sasaki, S., and Maeda, H., J. Phys. Chem., 1994, vol. 98, p. 10243.CrossRefGoogle Scholar
  16. 16.
    Goossens, K., Lava, K., Bielawski, C.W., and Binnemans, K., Chem. Rev., 2016, vol. 116, p. 4643.CrossRefGoogle Scholar
  17. 17.
    Binnemans, K., Chem. Rev., 2005, vol. 105, p. 4148.CrossRefGoogle Scholar
  18. 18.
    Godovskii, Yu.K. and Papkov, V.S., in Zhidkokristallicheskie polimery (Liquid Crystal Polymers), Plate, N.A., Ed., Moscow: Khimiya, 1988.Google Scholar
  19. 19.
    Pebalk, D.A., Barmatov, E.B., and Shibaev, V.P., Usp. Khim., 2005, vol. 74, p. 610.CrossRefGoogle Scholar
  20. 20.
    Mezhikovskii, S.M., Arinshtein, A.E., and Deber-deev, R.Yu., Oligomernoe sostoyanie veshchestva (Oligomer State of Matter), Moscow: Nauka, 2005.Google Scholar
  21. 21.
    Shevchenko, V.V., Stryutsky, A.V., Klymenko, N.S., Gumenna, M.A., Fomenko, A.A., Bliznyuk, V.N., Trachevsky, V.V., Davydenko, V.V., and Tsukruk, V.V., Polymer, 2014, vol. 55, p. 3349.CrossRefGoogle Scholar
  22. 22.
    Shevchenko, V.V., Stryutsky, A.V., Klymenko, N.S., Gumennaya, M.A., Fomenko, A.A., Trachevsky, V.V., Davydenko, V.V., Bliznyuk, V.N., and Dorokhin, A.V., Polym. Sci., Ser. B, 2014, vol. 56, p. 583.CrossRefGoogle Scholar
  23. 23.
    Xu, W., Ledin, P.A., Shevchenko, V.V., and Tsukruk, V.V., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 12570.CrossRefGoogle Scholar
  24. 24.
    Shevchenko, V.V., Gumennaya, M.A., Stryutskii, A.V., Klimenko, N.S., Trachevskii, V.V., Klepko, V.V., and Davydenko, V.V., Polym. Sci., Ser. B, 2018, vol. 60, p. 598.CrossRefGoogle Scholar
  25. 25.
    Greaves, T.L. and Drummond, C.J., Chem. Rev., 2015, vol. 115, p. 11379.CrossRefGoogle Scholar
  26. 26.
    Hayes, R., Warr, G.G., and Atkin, R., Chem. Rev., 2015, vol. 115, p. 6357.CrossRefGoogle Scholar
  27. 27.
    Yuan, J., Meccerreyes, D., and Antonietti, M., Prog. Polym. Sci., 2013, vol. 38, p. 1009.CrossRefGoogle Scholar
  28. 28.
    Shaplov, A.S., Ponkratov, D.O., Vlasov, P.S., Lozinskaya, E.I., Komarova, L.I., Malyshkina, I.A., Vidal, F., Nguyen, G.T.M., Armand, M., Wandrey, C., and Vygodskii, Ya.S., Polym. Sci., Ser. B, 2013, vol. 55, p. 122.CrossRefGoogle Scholar
  29. 29.
    Shaplov, A.S., Ponkratov, D.O., and Vygodskii, Ya.S., Polym. Sci., Ser. B, 2016, vol. 58, p. 73.CrossRefGoogle Scholar
  30. 30.
    Malkin, A.Ya., Semakov, A.V., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2010, vol. 52, p. 1083.CrossRefGoogle Scholar
  31. 31.
    Zapol’skii, A.K. and Baran, A.A., Koagulyanty i flokulyanty v protsessakh ochistki vody (Coagulants and Flocculants in Water Treatment Processes), Leningrad: Khimiya, 1987.Google Scholar
  32. 32.
    Geller, B.E., Geller, A.A., and Chertulov, V.G., Prakticheskoe rukovodstvo po fizikokhimii voloknoobrazuyushchikh polimerov (A Practical Guide on Physical Chemistry of Fiber-Forming Polymers), Moscow: Khimiya, 1996.Google Scholar
  33. 33.
    Shevchenko, V.V., Gumenna, M.A., Korolovych, V.F., Stryutsky, A.V., Trachevsky, V.V., Hrebnov, O., Klepko, V.V., Klymenko, N.S., Shumsky, V.F., Davyden-ko, V.V., and Ledin, P.A., J. Mol. Liq., 2017, vol. 235, p. 68.CrossRefGoogle Scholar
  34. 34.
    Masalova, I., Taylor, M., Kharatiyan, E., and Malkin, A.Ya., J. Rheol. (NY), 2005, vol. 49, p. 839.CrossRefGoogle Scholar
  35. 35.
    Malkin, A.Ya. and Isaev, A.I., Reologiya: kontseptsii, metody, prilozheniya (Rheology: Concepts, Methods, Applications), St. Petersburg: Professiya, 2010.Google Scholar
  36. 36.
    Reich, S. and Cohen, Y., J. Polym. Sci., Part B: Polym. Phys., 1981, vol. 19, p. 1255.Google Scholar
  37. 37.
    Il’in, S.O., Spiridonova, V.M., Savel’eva, V.S., Ovchinnikov, M.M., Khizhnyak, S.D., Frenkin, E.I., Pakhomov, P.M., and Malkin, A.Ya., Colloid J., 2011, vol. 73, p. 688.CrossRefGoogle Scholar
  38. 38.
    Ilyin, S., Roumyantseva, T., Spiridonova, V., Semakov, A., Frenkin, E., Malkin, A., and Kulichikhin, V., Soft Matter, 2011, vol. 7, p. 9090.CrossRefGoogle Scholar
  39. 39.
    Sun, L., Morales-Collazo, O., Xia, H., and Brennecke, J.F., J. Phys. Chem. B, 2015, vol. 119, p. 15030.CrossRefGoogle Scholar
  40. 40.
    Sun, L., Morales-Collazo, O., Xia, H., and Brennecke, J.F., J. Phys. Chem. B, 2016, vol. 120, p. 5767.CrossRefGoogle Scholar
  41. 41.
    Pulst, M., Samiullah, M.H., Baumeister, U., Prehm, M., Balko, J., Thurn-Albrecht, T., Busse, K., Golitsyn, Y., Reichert, D., and Kressler, J., Macromolecules, 2016, vol. 49, p. 6609.CrossRefGoogle Scholar
  42. 42.
    Masalova, I., Malkin, A.Ya., and Foudazi, R., Appl. Rheol., 2008, vol. 18, p. 44790.Google Scholar
  43. 43.
    Nguyen, Q.D. and Boger, D.V., Rheol. Acta, 1985, vol. 24, p. 427.CrossRefGoogle Scholar
  44. 44.
    Mewis, J., J. Non-Newtonian Fluid Mech., 1979, vol. 6, p. 1.CrossRefGoogle Scholar
  45. 45.
    Papkov, S.P. and Kulichikhin, V.G., Zhidkokristallicheskoe sostoyanie polimerov (Liquid Crystalline State of Polymers), Moscow: Khimiya, 1977.Google Scholar
  46. 46.
    Kulichikhin, V.G., in Zhidkokristallicheskie polimery (Liquid Crystal Polymers), Plate, N.A., Ed., Moscow: Khimiya, 1988, p. 331.Google Scholar
  47. 47.
    Raghavan, S.R. and Khan, S.A., J. Rheol. (NY), 1995, vol. 39, p. 1311.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. F. Shumskii
    • 1
    Email author
  • V. V. Shevchenko
    • 1
  • M. A. Gumennaya
    • 1
  • I. P. Getmanchuk
    • 1
  • A. V. Stryutskii
    • 1
  • N. S. Klimenko
    • 1
  • V. V. Davidenko
    • 1
  • T. D. Ignatova
    • 1
  • A. P. Syrovets
    • 1
  • L. A. Vorontsova
    • 1
  1. 1.Institute of Macromolecular Chemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations