Colloid Journal

, Volume 80, Issue 6, pp 803–813 | Cite as

Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Produced fromFumaria officinalis L. Plant Extract

  • Milorad Cakić
  • Slobodan GlišićEmail author
  • Dragan Cvetković
  • Miroslav Cvetinov
  • Ljiljana Stanojević
  • Bojana Danilović
  • Katarina Cakić


Synthesis of silver nanoparticles using plant extract of Fumaria officinalis L., (AgNPs-E), as a reducing and capping agent, is presented in this study. Formation of AgNPs-E is monitored by measuring surface plasmon resonance (SPR) absorption band in the UV-VIS range 200–800 nm. Based on UV-VIS spectra, the SPR band of AgNPs-E obtained by synthesis at the room and boiling temperatures appeared at 438  and 440 nm, respectively. After 15 days of equilibration, the SPR band was slightly shifted by 6 nm indicating a good stability of the formed complex at room temperature. The bands in the range 200–400 nm, originating from π−π* and n−π* transitions in the extract, disappeared in the spectra of AgNPs-E after reduction. Morphology, size and shape of formed AgNPs-E were investigated by scanning electron microscopy. The presence of both elemental silver and its crystalline structure (face centered cubic type) in AgNPs-E was confirmed by the energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analyses. Particles size was determined by the XRD analysis: 20 ± 1 and 18 ± 1 nm at room (sample 1) and boiling temperature (sample 2), respectively. Fourier transform infrared spectroscopy (FTIR) assessments were carried out to identify biomolecules of F. officinalis responsible for the reduction and capping of the bioreduced silver nanoparticles and to predict their role in silver nanoparticles synthesis. FTIR spectroscopy indicated the activity of different functional groups during the synthesis by the changes in νC–OH, δOH, νC–O–C and (NH)C=O modes in the AgNPs-E spectrum relative to that of the extract. The AgNPs-E particles showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillusluteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.



This work is a part of the project TR-34012 and OI-171015 which is financially supported by Ministry of Science of the Republic of Serbia. The authors also wish to thank to Dr. M. Bokorov from the University of Novi Sad, Department for Biology and Ecology for SEM/EDX measurements.


  1. 1.
    Amooaghaie, R., Saeri, M.R., and Azizi, M., Ecotoxicol. Environ. Saf., 2015, vol. 120, p. 400.CrossRefGoogle Scholar
  2. 2.
    Sathishkumar, M., Sneha, K., Won, S. W., Cho, C.-W., Kim, S., and Yun, Y.-S., Colloids Surf. B, 2009, vol. 73, p. 332.CrossRefGoogle Scholar
  3. 3.
    Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., and Misra, A., Colloids Surf. A, 2009, vol. 339, p. 134.CrossRefGoogle Scholar
  4. 4.
    Mubarak Ali, D., Thajuddin, N., Jeganathan, K., and Gunasekaran, M., Colloids Surf. B, 2011, vol. 85, p. 360.CrossRefGoogle Scholar
  5. 5.
    Vilchis-Nestor, A.R., Sanchez-Mendieta, V., Camacho-Lopez, M.A., Gomez-Espinosa, R.M., Camacho-Lopez, M.A., and Arenas-Alatorre, J. A., Mater. Lett., 2008, vol. 62, p. 3103.CrossRefGoogle Scholar
  6. 6.
    Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M., J. Colloid Interface Sci., 2004, vol. 275, p. 496.CrossRefGoogle Scholar
  7. 7.
    Abu Bakar, N.H.H., Ismail, J., and Abu Bakar, M., Mater. Chem. Phys., 2007, vol. 104, p. 276.CrossRefGoogle Scholar
  8. 8.
    Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H., and Varadarajan, P.V., Carbohydr. Res., 2006, vol. 341, p. 2012.CrossRefGoogle Scholar
  9. 9.
    Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., and Sastry, M., Biotechnol. Prog., 2006, vol. 22, p. 577.CrossRefGoogle Scholar
  10. 10.
    Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., and Sastry, M., Nat. Mater., 2004, vol. 3, p. 482.CrossRefGoogle Scholar
  11. 11.
    Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M., Chem. Mater., 2005, vol. 17, p. 566.CrossRefGoogle Scholar
  12. 12.
    Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea-Torresdey, J. L., and Pal, T., Environ. Sci. Technol., 2007, vol. 41, p. 5137.CrossRefGoogle Scholar
  13. 13.
    De Aragão, A.P., De Oliveira, T.M., Quelemes, P.V., Perfeito, M.L.G., Araújo, M.C., Santiago, J.A.S., Cardoso, V.S., Quaresma, P., Leite, J.R.A., and Da Silva, D.A., Arab. J. Chem., 2016. doi 10.1016/ j.arabjc.2016.04.014Google Scholar
  14. 14.
    Ebrahiminezhad, A., Barzegar, Y., Ghasemi, Y., and Berenjian, A., Chem. Ind. Chem. Eng. Q., 2017, vol. 23, p. 31.CrossRefGoogle Scholar
  15. 15.
    Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., and Chen, C., Nanotechnology, 2007, vol. 18, p. 105 104.CrossRefGoogle Scholar
  16. 16.
    Sabri, M.A., Umer, A., Awan, G.H., Hassan M.F. and Hasnain, A., Nanomater. Nanotechnol., 2016, vol. 6, p. 291.CrossRefGoogle Scholar
  17. 17.
    Latif, A., Rehman, S., Afag, S.H., and Sidiqui, N., Hippocratic J. Unani Med., 2012, vol. 7, p. 91.Google Scholar
  18. 18.
    Ivanov, I.G., Vracheva, V.Z., Marchev, A.S., Petkova, N.T., Aneva, I.Y., Danev, P.P., and Georgiev V.G., Int. J. Curr. Microbiol. Appl. Sci., 2014, vol. 3, p. 296.Google Scholar
  19. 19.
    Glišić, S., Stanojević, L.J., Cvetković, D., Zvezdanović, J., Nikolić, G., and Cakić, M., Abstracts of Papers, 24th Congress of Chemists and Technologists of Macedonia, MPCE 011, 2016, Ohrid, Republic of Macedonia, p. 215.Google Scholar
  20. 20.
    Clearfield, A., Reibenspies, J., and Bhuvanesh, N. Principles and Applications of Powder Diffraction, New York: Wiley, 2008.Google Scholar
  21. 21.
    Bednar, N., PhD Thesis (University of Novi Sad, Serbia, 2014).Google Scholar
  22. 22.
    Saleh, M.M. and Khalet, M.I., Int. J. Sci. Res., 2013, vol. 4, p. 2083.Google Scholar
  23. 23.
    McConnell, J.C., McConnell, R.M., and Hossner, L.R., Proc. Ark. Acad. Sci., 1993, vol. 47, p. 73.Google Scholar
  24. 24.
    Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., and Davaran, S., Bull. Korean Chem. Soc., 2012, vol. 33, p. 3957.CrossRefGoogle Scholar
  25. 25.
    Kumar, V.V., Yadov, S.C., and Yadov, S.K., J. Chem. Technol. Biotechnol., 2010, vol. 85, p. 1301.CrossRefGoogle Scholar
  26. 26.
    Kumar, V. and Yadov, S.K., J. Chem. Technol. Biotechnol., 2009, vol. 84, p. 151.CrossRefGoogle Scholar
  27. 27.
    Nikolić, G., Cakić, M., Glišić, S., Cvetković, D., Mitić, Ž., and Marković, D., in Fourier Transforms, ISBN: 978-953-51-4927-9, InTech, November 2016, Available from: Scholar
  28. 28.
    Glišić, S., Cakić, M., Nikolić, G., and Danilović, B., J. Mol. Struct., 2015, vol. 1084, p. 345.CrossRefGoogle Scholar
  29. 29.
    Cakić, M., Glišić, S., Nikolić, G., Nikolić, G.M., Cakić, K., and Cvetinov, M. J. Mol. Struct., 2016, vol. 1110, p. 156.CrossRefGoogle Scholar
  30. 30.
    Andrews, J.M., J. Antimicrob. Chemother., 2005, vol. 56, p. 60.CrossRefGoogle Scholar
  31. 31.
    Nagajyothi, P.C. and Lee, K.D., J. Nanomater., 2011, vol. 2011, p. 49.CrossRefGoogle Scholar
  32. 32.
    Tamboli, D.P. and Lee, D.S., J. Hazard. Mater. 2013, vol. 260, p. 878.CrossRefGoogle Scholar
  33. 33.
    Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash, D., Nanotechnology, 2007, vol. 18, p. 225 103.CrossRefGoogle Scholar
  34. 34.
    Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., and Lead, J.R., Environ. Toxicol. Chem., 2008, vol. 27, p. 1825.CrossRefGoogle Scholar
  35. 35.
    Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., and Kim, J.O., J. Biomed. Mater. Res., 2000, vol. 52, p. 662.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Milorad Cakić
    • 1
  • Slobodan Glišić
    • 1
    Email author
  • Dragan Cvetković
    • 1
  • Miroslav Cvetinov
    • 2
  • Ljiljana Stanojević
    • 1
  • Bojana Danilović
    • 1
  • Katarina Cakić
    • 3
  1. 1.University of Niš, Faculty of TechnologyLeskovacSerbia
  2. 2.University of Novi Sad, Faculty of Natural SciencesNovi SadSerbia
  3. 3.University of Niš, Faculty of MedicineNišSerbia

Personalised recommendations