Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 739–750 | Cite as

Model Nanoporous Supramolecular Structures Based on Carbon Nanotubes and Hydrocarbons for Methane and Hydrogen Adsorption

  • A. V. ShkolinEmail author
  • A. A. Fomkin
  • V. Yu. Yakovlev
  • I. E. Men’shchikov
Article

Abstract

A procedure has been proposed for the self-assembly of carbon nanotubes into arrays with the use of coordinating molecules and the development of secondary porosity in the resulting supramolecular structures. Molecular dynamics has been employed to study the formation of such structures and determine the effective radius of pores formed in them. The average micropore sizes in the obtained supramolecular structures have been related to the sizes of coordinating molecules and their orientation with respect to nanotube surface. Adsorption of methane and hydrogen on such model systems has been calculated on the basis of the theory of volume filling of micropores. It has been shown that the porosity resulting from the organization of the nanotubes into arrays with the help of coordinating molecules makes it possible to accumulate methane and hydrogen at the level of the best model adsorbents.

Notes

ACKNOWLEDGMENTS

We are grateful to the developers of the Tinker Molecular Modelling software package for the possibility to use it in our work1.

This work was supported by the Russian President’s Scholarship for Young Scientists and Postgraduate Students Dealing with Research and Development in High-Priority Fields of Modernization of the Russian Economy, project no. SP-1312.2016.1.

REFERENCES

  1. 1.
    Prajwal, B.P. and Ayappa, K.G., Adsorption, 2014, vol. 20, p. 769.CrossRefGoogle Scholar
  2. 2.
    Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M., Parilla, P.A., and Heben, M.J., Abstracts of Papers, Proceedings of the 2000 Hydrogen Program Review NREL/CP-570-28890. Google Scholar
  3. 3.
    Solar, C., Blanco, A.G., Vallone, A., and Sapag, K., in Natural Gas, Rijeka: InTech, 2010, p. 205.Google Scholar
  4. 4.
    Zacharia, R. and Rather, S.U., J. Nanomater., 2015, Article ID 914845.Google Scholar
  5. 5.
    Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Strizhenov, E.M., et al., Protection of Metals and Physical Chemistry of Surfaces. 2017, vol. 53, p. 780.Google Scholar
  6. 6.
    Thommes, M., Kaneko, K., Neimark, A.V., Oliver, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, p. 1051.CrossRefGoogle Scholar
  7. 7.
    Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Protection of Metals and Physical Chemistry of Surfaces, 2014, vol. 50, p. 173.Google Scholar
  8. 8.
    Fomkin, A.A., in Sovremennye problemy fizicheskoi khimii nanomaterialov (Current Problems of Physical Chemistry of Nanomaterials), Tsivadze, A.Yu., Ed., Moscow: OOO Izd. Gruppa “Granitsa,” 2008, p. 362.Google Scholar
  9. 9.
    Shkolin, A.V., Fomkin, A.A., Strizhenov, E.M., and Pulin, A.L., Protection of Metals and Physical Chemistry of Surfaces, 2014, vol. 50, p. 279.Google Scholar
  10. 10.
    Yakovlev, V.Yu. and Fomkin, A.A., Colloid J., 2009, vol. 71, p. 877.CrossRefGoogle Scholar
  11. 11.
    Cao, D., Zhang, X., Chen, J., Wang, W., and Yun, J., J. Phys. Chem. B, 2003, vol. 107, p. 13286.CrossRefGoogle Scholar
  12. 12.
    Wang, Q. and Johnson, J.K., J. Phys. Chem. B, 1999, vol. 103, p. 4809.CrossRefGoogle Scholar
  13. 13.
    Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermophysical Properties of Gases and Liquids), Moscow: Nauka, 1972.Google Scholar
  14. 14.
    Pauling, L., The Nature of the Chemical Bond, New York: Cornell Univ. Press, 1960.Google Scholar
  15. 15.
    Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technique), Moscow: Khimiya, 1976.Google Scholar
  16. 16.
    Hirschfelder, J.O., Curtiss, C.F., and Bird, R., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.Google Scholar
  17. 17.
    Shkolin, A.V. and Fomkin, A.A., Colloid J., 2017, vol. 79, p. 701.CrossRefGoogle Scholar
  18. 18.
    Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.CrossRefGoogle Scholar
  19. 19.
    Tolmachev, A.M., Anuchin, K.M., Kryuchen-kova, N.G., and Fomkin, A.A., Protection of Metals and Physical Chemistry of Surfaces, 2011, vol. 47, p. 150.Google Scholar
  20. 20.
    Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.CrossRefGoogle Scholar
  21. 21.
    Andersen, H.C., J. Chem. Phys., 1980, vol. 72, p. 2384.CrossRefGoogle Scholar
  22. 22.
    Frenkel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, San Diego: Academic, 2002.Google Scholar
  23. 23.
    Chandler, D., J. Chem. Phys., 1978, vol. 68, p. 2959.CrossRefGoogle Scholar
  24. 24.
    Chen, J.H., Wong, D.S.H., Tan, C.S., Subramanian, R., Lira, C.T., and Orth, M., Ind. Eng. Chem. Res., 1997, vol. 36, p. 2808.CrossRefGoogle Scholar
  25. 25.
    Shkolin, A.V. and Fomkin, A.A., Colloid J., 2016, vol. 78, p. 800.CrossRefGoogle Scholar
  26. 26.
    Il’in, B.V., Priroda adsorbtsionnykh sil (The Nature of Adsorption Forces), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1952.Google Scholar
  27. 27.
    Eletskii, A.V. and Smirnov, B.M., Usp. Fiz. Nauk, 1995, vol. 165, p. 977.CrossRefGoogle Scholar
  28. 28.
    Dubinin, M.M., Adsorbtsiya i poristost’(Adsorption and Porosity), Moscow: VAKhZ, 1972.Google Scholar
  29. 29.
    Yakovlev, V.Yu., Shkolin, A.V., Fomkin, A.A., and Men’shchikov, I.E., Russ. J. Phys. Chem. A, 2018, vol. 92, p. 552.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Shkolin
    • 1
    Email author
  • A. A. Fomkin
    • 1
  • V. Yu. Yakovlev
    • 1
  • I. E. Men’shchikov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations