Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 691–697 | Cite as

On the Localization of CMC and Maximum Concentration of Surface-Active Ions According to the Theory of Micellar Solutions

  • A. I. RusanovEmail author
Article

Abstract

The micellization theory that I previously developed on the basis of the definition of critical micelle concentration (CMC) using the constant of the law of mass action as applied to ionic surfactants (Colloid. J., 2016, vol. 78, p. 669) has been supplemented and refined. The problem concerning the relative positions of the maximum in the surface-active ion concentration and CMC as functions of aggregation number has been solved in the general form. It has been shown that the curves of these functions may intersect. On the side of smaller aggregation numbers relative to the intersection point, the maximum lies above the CMC, while, at larger aggregation numbers, it is, on the contrary, located below the CMC in the concentration axis. The influence of the type of an electrolyte on this effect has been studied by the example of an ionic surfactant. If the charge of a counterion is higher than the charge of a surface-active ion, the maximum is located above the CMC; otherwise, it is below the CMC. At the same time, the question of the formulation of the law of mass action for ionic surfactants with multivalent ions has been answered. It has been shown that the definition of CMC via the constant of the law of mass action must, in this case, comprise stoichiometric coefficients. The theory has been formulated under the condition of a constant aggregation number in the vicinity of CMC. In addition, an ideal behavior of a mixture of monomers and micelles is assumed, which is inherent in ionic surfactants with rather low CMCs.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-13-00112.

REFERENCES

  1. 1.
    Murrey, R.C. and Hartley, G.S., Trans. Faraday Soc., 1935, vol. 31, p. 183.CrossRefGoogle Scholar
  2. 2.
    Malik, W., Ahmad, S.I., and Jain, A.K., Kolloid. Z., 1967, vol. 218, p. 155.CrossRefGoogle Scholar
  3. 3.
    Kaibara, K., Nakahara, T., Satake, I., and Matuura, R., Mem. Fac. Sci. Kyushu Univ., Ser. C, 1970, vol. 7, p. 1.Google Scholar
  4. 4.
    Birch, B.J. and Clarke, D.E., Anal. Chim. Acta, 1972, vol. 61, p. 159.CrossRefGoogle Scholar
  5. 5.
    Shirahama, K., Bull. Chem. Soc. Jpn., 1974, vol. 47, p. 3165.CrossRefGoogle Scholar
  6. 6.
    Sasaki, T., Hattori, M., Sasaki, J., and Nukina, K., Bull. Chem. Soc. Jpn., 1975, vol. 48, p. 1397.CrossRefGoogle Scholar
  7. 7.
    Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J., and Tondre, C., J. Phys. Chem., 1976, vol. 80, p. 905.CrossRefGoogle Scholar
  8. 8.
    Cutler, S.G., Meares, P., and Hall, D.G., J. Chem. Soc., Faraday Trans. 1, 1978, vol. 74, p. 1758.CrossRefGoogle Scholar
  9. 9.
    Lindman, B., Puyal, M.C., Kamenka, N., Brun, B., and Gunnarsson, G., J. Phys. Chem., 1982, vol. 86, p. 1702.CrossRefGoogle Scholar
  10. 10.
    Gunnarsson, G., Jönsson, B., and Wennerström, H., J. Phys. Chem., 1980, vol. 84, p. 3114.CrossRefGoogle Scholar
  11. 11.
    Rusanov, A.I., Mitselloobrazovanie v rastvorakh po-verkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.Google Scholar
  12. 12.
    Rusanov, A.I., Adv. Colloid Interface Sci., 1993, vol. 45, p. 1.CrossRefGoogle Scholar
  13. 13.
    Rusanov, A.I., Langmuir, 2014, vol. 30, p. 14443.CrossRefGoogle Scholar
  14. 14.
    Rusanov, A.I., Colloid J., 2016, vol. 78, p. 669.CrossRefGoogle Scholar
  15. 15.
    Lindman, B. and Wennerström, H., Top. Curr. Chem., 1980, vol. 87, p. 1.CrossRefGoogle Scholar
  16. 16.
    Eicke, H.-F., Top. Curr. Chem., 1980, vol. 87, p. 85.CrossRefGoogle Scholar
  17. 17.
    Rusanov, A.I., Colloids Surf. A, 2016, vol. 506, p. 162.CrossRefGoogle Scholar
  18. 18.
    Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, New York: Academic, 1959.Google Scholar
  19. 19.
    Reekmans, S., Bernik, D., Gehlenj, M., Van Stam, J., Van der Auweraer, M., and De Schryver, F.C., Langmuir, 1993, vol. 9, p. 2289.CrossRefGoogle Scholar
  20. 20.
    Hansson, P., Jonsson, B., Strom, C., and Soder-man, O., J. Phys. Chem. B, 2000, vol. 104, p. 3496.CrossRefGoogle Scholar
  21. 21.
    Fafati, A.A., Gharibi, H., Iloukhani, H., and Safdari, L., Phys. Chem. Liq., 2003, vol. 41, p. 227.CrossRefGoogle Scholar
  22. 22.
    Anachkov, S.E., Danov, K.D., Basheva, E.S., Kralchevsky, P.A., and Ananthapadmanabhan, K.P., Adv. Colloid Interface Sci., 2012, vols. 183–184, p. 55.Google Scholar
  23. 23.
    Pisarcik, M., Devinsky, F., and Pupak, M., Open Chem., 2015, vol. 13, p. 922.CrossRefGoogle Scholar
  24. 24.
    Rusanov, A.I., Colloids Surf. A, 2018, vol. 551, p. 158.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Mendeleev Center, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations