Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 684–690 | Cite as

Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template Monolayers of Graphene Oxide

  • A. K. Reshetnikova
  • A. I. Zvyagina
  • Yu. Yu. Enakieva
  • V. V. Arslanov
  • M. A. KalininaEmail author
Article

Abstract

The development of approaches to the integration of metal-organic frameworks (MOFs) with solid substrates is an urgent problem of the physical chemistry of thin films, whose solution will provide the compatibility of MOFs with modern planar technologies. It has been shown that it is possible to implement the layer-by-layer assembly of a coordination structure based on N,N'-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide as an organic linker and zinc acetate as a binding metal cluster on the substrates coated with monolayers of graphene oxide particles. According to absorption spectroscopy and X-ray diffraction data, the two-dimensional geometry of the template carbon layer provides the uniform growth of a crystalline coordination structure on the solid substrate. The retention of the fluorescence intensity of the perylene linker in this structure indicates that its molecules are not aggregated via the π–π stacking mechanism. The scanning electron microscopy data have shown that the films have a uniform micromorphology. The obtained results confirm the applicability of graphene oxide monolayers as universal functional coatings, which provide the attachment and uniform growth of MOF films on diverse solid substrates.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 16-13-10512. The X-ray studies were performed at the Center of Collective Use of the Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences.

REFERENCES

  1. 1.
    James, S.L., Chem. Soc. Rev., 2003, vol. 32, p. 276.Google Scholar
  2. 2.
    Farha, O.K. and Hupp, J.T., Acc. Chem. Res., 2010, vol. 43, p. 1166.Google Scholar
  3. 3.
    Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., and Yaghi, O.M., Science (Washington, D. C.), 2010, vol. 329, p. 424.Google Scholar
  4. 4.
    Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.-S., Hwang, Y.K., Marsaud, V., Bories, P.-N., Cynober, L., Gil, S., Ferey, G., Couvreur, P., and Gref, R., Nat. Mater., 2010, vol. 9, p. 172.Google Scholar
  5. 5.
    Flaig, R.W., Osborn, Popp, T.M., Fracaroli, A.M., Kapustin, E.A., Kalmutzki, M.J., Altamimi, R.M., Fathieh, F., Reimer, J.A., and Yaghi, O.M., J. Am. Chem. Soc., 2017, vol. 139, p. 12125.Google Scholar
  6. 6.
    Li, J.-R., Sculley, J., and Zhou, H.-C., Chem. Rev., 2012, vol. 112, p. 869.Google Scholar
  7. 7.
    Trickett, C.A., Helal, A., Al-Maythalony, B.A., Yamani, Z.H., Cordova, K.E., and Yaghi, O.M., Nat. Rev. Mater., 2017, vol. 2, p. 17045.Google Scholar
  8. 8.
    Peng, Y., Li, Y., Ban, Y., Jin, H., Jiao, W., Liu, X., and Yang, W., Science (Washington, D. C.), 2014, vol. 346, p. 1356.Google Scholar
  9. 9.
    Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., and Hupp, J.T., Chem. Rev., 2012, vol. 112, p. 1105.Google Scholar
  10. 10.
    Corma, A., García, H., Llabrés, I., and Xamena, F.X., Chem. Rev., 2010, vol. 110, p. 4606.Google Scholar
  11. 11.
    Zhu, J., Maza, W.A., and Morris, A.J., J. Photochem. Photobiol. A, 2017, vol. 344, p. 64.Google Scholar
  12. 12.
    Zhang, C., Li, X., Kang, S., Qin, L., Li, G., and Mu, J., Chem. Commun., 2014, vol. 50, p. 9064.Google Scholar
  13. 13.
    Laokroekkiat, S., Hara, M., Nagano, S., and Nagao, Y., Langmuir, 2016, vol. 32, p. 6648.Google Scholar
  14. 14.
    So, M.C., Jin, S., Son, H.-J., Wiederrecht, G.P., Farha, O.K., and Hupp, J.T., J. Am. Chem. Soc., 2013, vol. 135, p. 15698.Google Scholar
  15. 15.
    Zacher, D., Yusenko, K., Betard, A., Henke, S., Molon, M., Ladnorg, T., Shekhah, O., Schüpbach, B., Arcos, T., Krasnopolski, M., Meilikhov, M., Winter, J., Terfort, A., Wöll, C., and Fischer, R.A., Chem.-Eur. J., 2011, vol. 17, p. 1448.Google Scholar
  16. 16.
    Zhuang, J.-L., Kind, M., Grytz, C.M., Farr, F., Diefenbach, M., Tussupbayev, S., Holthausen, M.C., and Terfort, A., J. Am. Chem. Soc., 2015, vol. 137, p. 8237.Google Scholar
  17. 17.
    Kim, D. and Coskun, A., CrystEngComm, 2016, vol. 18, p. 4013.Google Scholar
  18. 18.
    Meshkov, I.N., Zvyagina, A.I., Shiryaev, A.A., Nickolsky, M.S., Baranchikov, A.E., Ezhov, A.A., Nugmanova, A.G., Enakieva, Y.Y., Gorbunova, Y.G., Arslanov, V.V., and Kalinina, M.A., Langmuir, 2018, vol. 34, p. 5184.Google Scholar
  19. 19.
    Zvyagina, A.I., Shiryaev, A.A., Baranchikov, A.E., Chernyshev, V.V., Enakieva, Y.Y., Raitman, O.A., Ezhov, A.A., Meshkov, I.N., Grishanov, D.A., Ivanova, O.S., Gorbunova, Y.G., Arslanov, V.V., and Kalinina, M.A., New J. Chem., 2017, vol. 41, p. 948.Google Scholar
  20. 20.
    Kasha, M., Rawls, H.R., and El-Bayoumi, A.M., Pure Appl. Chem., 1965, vol. 11, p. 371.Google Scholar
  21. 21.
    Datar, A., Balakrishnan, K., and Zang, L., Chem. Commun., 2013, vol. 49, p. 6894.Google Scholar
  22. 22.
    Li, X.-Q., Stepanenko, V., Chen, Z., Prins, P., Siebbeles, L.D.A., and Wurthner, F., Chem. Commun., 2006, p. 3871.Google Scholar
  23. 23.
    Kozma, E. and Catellani, M., Dyes Pigments, 2013, vol. 98, p. 160.Google Scholar
  24. 24.
    Hariharan, P.S., Pitchaimani, J., Madhu, V., and Anthony, S.P., Opt. Mater., 2017, vol. 64, p. 53.Google Scholar
  25. 25.
    Sun, Z., Feng, T., and Russell, T.P., Langmuir, 2013, vol. 29, p. 13407.Google Scholar
  26. 26.
    Tang, Z., Zhuang, J., and Wang, X., Langmuir, 2010, vol. 26, p. 9045.Google Scholar
  27. 27.
    Chen, F., Liu, S., Shen, J., Wei, L., Liu, A., Chan-Park, M.B., and Chen, Y., Langmuir, 2011, vol. 27, p. 9174.Google Scholar
  28. 28.
    Zvyagina, A.I., Melnikova, E.K., Averin, A.A., Baranchikov, A.E., Tameev, A.R., Malov, V.V., Ezhov, A.A., Grishanov, D.A., Gun, J., Ermakova, E.V., Arslanov, V.V., and Kalinina, M.A., Carbon, 2018, vol. 134, p. 62.Google Scholar
  29. 29.
    Biswas, S. and Drzal, L.T., Nano Lett., 2009, vol. 9, p. 167.Google Scholar
  30. 30.
    Gudarzi, M.M. and Sharif, F., Soft Matter, 2011, vol. 7, p. 3432.Google Scholar
  31. 31.
    Shahriary, L. and Athawale, A.A., Int. J. Renew. Energy Environ. Eng., 2014, vol. 2, p. 58.Google Scholar
  32. 32.
    Akimoto, S., Ohmori, A., and Yamazaki, I., J. Phys. Chem. B, 1997, vol. 101, p. 3753.Google Scholar
  33. 33.
    Wang, J., Shi, W., Liu, D., Zhang, Z.J., Zhu, Y., and Wang, D., Appl. Catal. B, 2017, vol. 202, p. 289.Google Scholar
  34. 34.
    Barron, P.M., Wray, C.A., Hu, C., Guo, Z., and Choe, W., Inorg. Chem., 2010, vol. 49, p. 10217.Google Scholar
  35. 35.
    Shmilovits, M., Vinodu, M., and Goldberg, I., Cryst. Growth Des., 2004, vol. 4, p. 633.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. K. Reshetnikova
    • 1
  • A. I. Zvyagina
    • 1
  • Yu. Yu. Enakieva
    • 1
  • V. V. Arslanov
    • 1
  • M. A. Kalinina
    • 1
    Email author
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences,MoscowRussia

Personalised recommendations