Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 676–683 | Cite as

The Effect of Stabilizing Ligands on the Interaction between Colloidal Quantum Dots of Cadmium Selenide. Computer Simulation

  • A. V. NevidimovEmail author
  • V. F. Razumov
Article

Abstract

Classical full-atomic molecular dynamics has been employed to study the effect of ligand environment on the dipole moments of colloidal quantum dots of cadmium selenide. Using trioctylphosphine oxide, hexadecylamine, and octadecylphosphonic acid as examples, it has been shown that the presence of uncompensated electrical charge at the polar group of a ligand molecule is the primary factor, while the distribution of point charges over the electrically neutral group is of secondary significance. Dipole–dipole interactions between CdSe nanoparticles make the greatest contribution upon the formation of dense layers, while, in solutions, this contribution is low as compared with the ordinary thermal motion.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14‑13‑01426.

REFERENCES

  1. 1.
    Razumov, V.F., Usp. Fiz. Nauk, 2016, vol. 186, p. 1368.CrossRefGoogle Scholar
  2. 2.
    Brichkin, S.B. and Razumov, V.F., Usp. Khim., 2016, vol. 85, p. 1297.CrossRefGoogle Scholar
  3. 3.
    Kislenko, S.A., Kislenko, V.A., and Razumov, V.F., Colloid J., 2015, vol. 77, p. 727.CrossRefGoogle Scholar
  4. 4.
    Kopanichuk, I.V., Vanin, A.A., and Brodskaya, E.N., Colloid J., 2018, vol. 80, p. 184.CrossRefGoogle Scholar
  5. 5.
    Lusar, A. and Bratko, D., J. Chem. Phys., 1990, vol. 92, p. 642.CrossRefGoogle Scholar
  6. 6.
    London, F., Trans. Faraday Soc., 1937, vol. 33, p. 8.CrossRefGoogle Scholar
  7. 7.
    Rabani, E., J. Chem. Phys., 2001, vol. 115, p. 1493.CrossRefGoogle Scholar
  8. 8.
    Nevidimov, A.V. and Razumov, V.F., Colloid J., 2018, vol. 80, p. 73.CrossRefGoogle Scholar
  9. 9.
    Nevidimov, A.V. and Razumov, V.F., Colloid J., 2016, vol. 78, p. 83.CrossRefGoogle Scholar
  10. 10.
    Nevidimov, A.V. and Razumov, V.F., Colloid J., 2016, vol. 78, p. 641.CrossRefGoogle Scholar
  11. 11.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comput. Chem., 2005, vol. 26, p. 1781.CrossRefGoogle Scholar
  12. 12.
    Voevodin, Vl., Zhumatii, S., Sobolev, S., Antonov, A., Bryzgalov, P., Nikitenko, D., Stefanov, K., and Voevodin, Vad., Otkryt. Sist. SUBD, 2012, no. 7, p. 36.Google Scholar
  13. 13.
    Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph., 1996, vol. 14, p. 33.CrossRefGoogle Scholar
  14. 14.
    Nevidimov, A.V. and Razumov, V.F., Colloid J., 2013, vol. 75, p. 191.CrossRefGoogle Scholar
  15. 15.
    Rabani, E., J. Chem. Phys., 2002, vol. 116, p. 258.CrossRefGoogle Scholar
  16. 16.
    Nevidimov, A.V., Khim. Fiz., 2014, vol. 33, p. 49.Google Scholar
  17. 17.
    Gomes, R., Hassinen, A., Szczygiel, A., Zhao, Q., Vantomme, A., Martins, J.C., and Hens, Z., J. Phys. Chem. Lett., 2011, vol. 2, p. 145.CrossRefGoogle Scholar
  18. 18.
    Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2017, vol. 51, p. 38.CrossRefGoogle Scholar
  19. 19.
    Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2015, vol. 49, p. 193.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations