Advertisement

Colloid Journal

, Volume 80, Issue 5, pp 560–568 | Cite as

Adsorption Properties of Thiocontaining Schungite

  • A. V. Ul’yanov
  • I. A. Polunina
  • K. E. Polunin
  • A. K. Buryak
Article
  • 2 Downloads

Abstract

Chromatography–mass spectrometry and thermodesorption mass spectrometry have been employed to study mineral schungite-III, in which various thiocompounds have been detected and identified. The influence of these compounds on the adsorption activity of schungite with respect to iodine has been investigated. It has been shown that sulfur present in schungite has no effect on the results of determining its adsorption activity and does not interact with iodine; however, it can interact with amino compounds to yield sulfides. Activation energies Ea have been experimentally determined for sulfur, iodine, and dimethyl disulfide desorption from the surfaces of schungite and a model sorbent, graphitized thermal carbon black. The Ea values of these compounds have appeared to be several times lower than the heats of their adsorption on carbon black calculated by the molecular-statistical method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shungity−novoe uglerodistoe syr’e (Shungites as New Carbonaceous Raw), Sokolov, V.A, Kalinin, Yu.K, and Dyukkiev, E.F., Eds., Petrozavodsk: Kareliya, 1984.Google Scholar
  2. 2.
    Betekhtin, A.G., Kurs mineralogii (Course of Mineralogy), Moscow: KDU, 2007.Google Scholar
  3. 3.
    Berezkin, V.I., Uglerod. Zamknutye nanochastitsy, makrostruktury, materialy (Carbon. Closed Nanoparticles, Macrostructures, Materials), St. Petersburg: AtrErgo, 2013.Google Scholar
  4. 4.
    Lugovskaya, I.G., Anufrieva, S.I., Golubtsov, N.V., and Krylova, A.V., Izv. Akad. Nauk, Ser. Khim., 2004, p. 1555.Google Scholar
  5. 5.
    Polunina, I.A., Vysotskii, V.V., Senchikhin, I.N., Polunin, K.E., Goncharova, I.S., Petukhova, G.A., and Buryak, A.K., Colloid J., 2017, vol. 79, p. 244.CrossRefGoogle Scholar
  6. 6.
    Golub, S.L., Ul’yanov, A., Buryak, A.K., Lugovskaya, I.G., Anufrieva, S.I., and Dubinchuk, V.T., Sorbts. Khromatogr. Protsessy, 2006, vol. 6, p. 748.Google Scholar
  7. 7.
    Polunina, I.A., Goncharova, I.S., Vysotskii, V.V., Polunin, K.E., and Buryak, A.K., Materialovedenie, 2016, no. 9, p. 36.Google Scholar
  8. 8.
    Shalimov, A.S., Kovalevskii, V.V., Obrezkov, O.N., and Yaroslavtsev, A.B., Inorg. Mater., 2004, vol. 40, p. 364.CrossRefGoogle Scholar
  9. 9.
    Polunin, K.E., Goncharova, I.S., Ul’yanov, A.V., Polunina, I.A., and Buryak, A.K., Colloid J., 2017, vol. 79, p. 250.CrossRefGoogle Scholar
  10. 10.
    Ul’yanov, A.V., Polunina, I.A., Polunin, K.E., and Buryak, A.K., Colloid J., 2018, vol. 80, p. 96.CrossRefGoogle Scholar
  11. 11.
    Polunina, I.A., Goncharova, I.S., Polunin, K.E., and Buryak, A.K., Materialovedenie, 2018, no. 2, p. 44.Google Scholar
  12. 12.
    Gusev, A.I. and Simonova, L.N., Analiticheskaya khimiya sery (Analytical Chemistry of Sulfur), Moscow: Nauka, 1975.Google Scholar
  13. 13.
    Taniguchi, N., Synlett, 2007, no. 12, p. 1917.CrossRefGoogle Scholar
  14. 14.
    Deryagina, E.N., Kozlov, I.A., Vershal’, V.V., and Babkin, V.A., Russ. J. Org. Chem., 1996, vol. 66, p. 1279.Google Scholar
  15. 15.
    Yamada, S., Wang, D., Li, S., Nishikawa, M., Qian, E.W., Ishikara, A., and Kabe, T., Chem. Commun., 2003, p. 842.Google Scholar
  16. 16.
    Middleton, W.H., J. Am. Chem. Soc., 1966, vol. 88, p. 3842.CrossRefGoogle Scholar
  17. 17.
    Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Elements of Organic Chemistry), Moscow: Khimiya, 1974, vol. 2.Google Scholar
  18. 18.
    Rus’yanova, N.D., Uglekhimiya (Coal Fuel Chemistry), Moscow: Nauka, 2000.Google Scholar
  19. 19.
    ASTM D 1510–13. Standard Test Method for Carbon Black-Iodine Adsorption Number. Intr. 1998. PA, USA: ASTM Int., 2013.Google Scholar
  20. 20.
    Lebedev, A.T., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: BINOM. Laboratoriya znanii, 2003.Google Scholar
  21. 21.
    Khmel’nitskii, R.A., Lukashenko, I.M., and Brodskii, E.S., Piroliticheskaya mass-spektrometriya vysokomolekulyarnykh soedinenii (Pyrolytic Mass Spectrometry of Polymers), Moscow: Khimiya, 1980.Google Scholar
  22. 22.
    Avgul’, N.N., Kiselev, A.V., and Poshkus, D.P., Adsorbtsiya gazov i parov na odnorodnykh poverkhnostyakh (Gas and Vapor Adsorption on Homogeneous Surfaces), Moscow: Khimiya, 1975.Google Scholar
  23. 23.
    Buryak, A.K., Usp. Khim., 2002, vol. 71, p. 788.CrossRefGoogle Scholar
  24. 24.
    Buryak, A.K., Dallakyan, P.B., and Kiselev, A.V., Dokl. Akad. Nauk SSSR, 1985, vol. 282, p. 350.Google Scholar
  25. 25.
    Fizicheskie velichiny (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z.., Eds., Moscow: Energoatomizdat, 1991, p. 289.Google Scholar
  26. 26.
    Naumov, V.A. and Kataeva, O.N., Molekulyarnoe stroenie organicheskikh soedinenii kisloroda i sery v gazovoi faze (Molecular Structure of Organic Oxygen and Sulfur Compounds in Gas Phase), Moscow: Nauka, 1990.Google Scholar
  27. 27.
    Sklyarov, A.V., Usp. Khim., 1986, vol. 55, p. 450.CrossRefGoogle Scholar
  28. 28.
    Wells, A., Strukturnaya neorganicheskaya khimiya (Structural Inorganic Chemistry), Moscow: Mir, 1987, vol. 2.Google Scholar
  29. 29.
    Lebedev, Yu.A. and Miroshnichenko, E.A., Termokhimiya paroobrazovaniya organicheskikh veshchestv. Teploty ispareniya, sublimatsii i davleniya nasyshchennogo para (Thermochemistry of Organic Compounds Vaporization. Vaporization Heat, Heats of Sublimation and Saturated Vapor Pressure), Moscow: Nauka, 1981.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Ul’yanov
    • 1
  • I. A. Polunina
    • 1
  • K. E. Polunin
    • 1
  • A. K. Buryak
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations