Advertisement

Colloid Journal

, Volume 80, Issue 5, pp 556–559 | Cite as

Electrokinetic Measurements at High Electrolyte Concentrations

  • I. P. Sergeeva
  • V. D. Sobolev
Article
  • 2 Downloads

Abstract

The method of capillary electrokinetics has for the first time been used to measure streaming current at high electrolyte concentrations. It has been shown that the streaming current is proportional to the applied pressure. At an electrolyte concentration of 1 M, the thickness of the diffuse layer is comparable with the size of a water molecule (0.3 nm); i.e., there is almost no diffuse layer. The existence of the streaming current in this case indicates that there are no hydrodynamically immobile layers near a smooth solid surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dukhin, S.S., Elektroprovodnost’ i elektrokineticheskie svoistva dispersnykh sistem (Conductivity and Electroki-netic Properties of Disperse Systems), Kiev: Naukova Dumka, 1975.Google Scholar
  2. 2.
    Hunter, R.J., Foundations of Colloid Science, Oxford: Oxford Univ. Press, 2001.Google Scholar
  3. 3.
    Lyklema, J., Fundamentals of Interfaces and Colloid Science, New York: Academic, 1995, vol. 2, Chaps. 3, 4.Google Scholar
  4. 4.
    Delgado, A.V., González-Caballero, F., Hunter, R.J., Koopal, L.K., and Lyklema, J., J. Colloid Interface Sci., 2007, vol. 309, p. 194.CrossRefGoogle Scholar
  5. 5.
    Lyklema, J., J. Phys.: Condens. Matter, 2001, vol. 13, p. 5027.Google Scholar
  6. 6.
    Erickson, D., Li, D., and Werner, C., J. Colloid Interface Sci., 2000, vol. 232, p. 186.CrossRefGoogle Scholar
  7. 7.
    Kijlstra, J., Van Leewan, H.P., and Lyklema, J., Langmuir, 1993, vol. 9, p. 1625.CrossRefGoogle Scholar
  8. 8.
    Lobbus, M., Van Leewan, H.P., and Lyklema, J., J. Colloid Interface Sci., 2000, vol. 229, p. 174.CrossRefGoogle Scholar
  9. 9.
    Leroy, P., Devau, N., Revil, A., and Bizi, M., J. Colloid Interface Sci., 2013, vol. 410, p. 81.CrossRefGoogle Scholar
  10. 10.
    Leroy, P., Tournassat, C., Bernard, O., Devau, N., and Azaroual, M., J. Colloid Interface Sci., 2015, vol. 451, p. 21.CrossRefGoogle Scholar
  11. 11.
    Li, S., Leroy, P., Heberlink, F., Devau, N., Jougnot, D., and Chiaberg, C., J. Colloid Interface Sci., 2015, vol. 468, p. 262.CrossRefGoogle Scholar
  12. 12.
    Jimenez, M.L., Arroyo, F.J., Carrique, F., and Delgado, A.V., J. Colloid Interface Sci., 2007, vol. 316, p. 836.CrossRefGoogle Scholar
  13. 13.
    Barchini, R., Van Leewan, H.P., and Lyklema, J., Langmuir, 2000, vol. 16, p. 8338.CrossRefGoogle Scholar
  14. 14.
    van der Wal, A., Minor, M., Norde, W., Zender, A.J.B., and Lyklema, J., Langmuir, 1997, vol. 13, p. 165.CrossRefGoogle Scholar
  15. 15.
    Minor, M., Van Leewan, H.P., and Lyklema, J., Langmuir, 1999, vol. 15, p. 6677.CrossRefGoogle Scholar
  16. 16.
    Lyklema, J., Rovillard, S., and De Coninck, J., Langmuir, 1998, vol. 14, p. 5659.CrossRefGoogle Scholar
  17. 17.
    Brown, M.A., Abbas, Z., Kleibert, A., Green, R.G., Goel, A., May, S., and Squires, T.M., Phys. Rev., 2016, vol. 6, p. 011007.CrossRefGoogle Scholar
  18. 18.
    Churaev, N.V., Sergeeva, I.P., Sobolev, V.D., and Derjaguin, B.V., J. Colloid Interface Sci., 1981, vol. 84, p. 451.CrossRefGoogle Scholar
  19. 19.
    Gavish, N. and Promislov, K., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2016, vol. 94, p. 012611.CrossRefGoogle Scholar
  20. 20.
    Levy, A., Andelman, D., and Orland, H., Phys. Rev. Lett., 2012, vol. 108, p. 227801.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations