Advertisement

Colloid Journal

, Volume 80, Issue 5, pp 484–491 | Cite as

The Effect of Single-Atomic Ions on the Melting of Microscopic Ice Particles According to Molecular Dynamics Data

  • A. V. Egorov
  • E. N. Brodskaya
  • A. Laaksonen
Article
  • 4 Downloads

Abstract

Molecular dynamics simulation of microscopic ice particles containing Ca2+, F, Cl, Na+, and Li+ ions has been performed in the temperature range of 20–200 K. For all the systems under consideration, phase and structural transformations accompanying their heating have been studied in detail, and the melting points have been determined. The main attention has been focused on the determination of the mechanisms of the effect of ions on the phase state of microcrystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Physical, Chemical, and Biological Properties of Stable Water Clusters, Lo, S.-Y. and Bonavida, B., Eds., Singapore: World Scientific, 1998.Google Scholar
  2. 2.
    Theory of Atomic and Molecular Clusters, Jellinek, J., Ed., New York: Springer, 1999.Google Scholar
  3. 3.
    Robertson, W.H. and Johnson, M.A., Annu. Rev. Phys. Chem., 2003, vol. 54, p. 173.CrossRefGoogle Scholar
  4. 4.
    Vaida, V., J. Chem. Phys., 2011, vol. 135, p. 020901.CrossRefGoogle Scholar
  5. 5.
    Wayne, R.P., Chemistry of Atmospheres, Oxford: Clarendon, 1991.Google Scholar
  6. 6.
    Sienfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, New York: Wiley, 1998.Google Scholar
  7. 7.
    Hock, C., Schmidt, M., Kuhnen, R., et al., Phys. Rev. Lett., 2009, vol. 103, p. 073401.CrossRefGoogle Scholar
  8. 8.
    Egorov, A.V., Brodskaya, E.N., and Laaksonen, A., J. Comput. Theor. Nanosci., 2008, vol. 5, p. 1.CrossRefGoogle Scholar
  9. 9.
    Nishio, K. and Mikami, M., J. Chem. Phys., 2009, vol. 130, p. 154302.CrossRefGoogle Scholar
  10. 10.
    Gelman-Constantin, J., Carignano, M.A., Szleifer, I., et al., J. Chem. Phys., 2010, vol. 133, p. 024506.CrossRefGoogle Scholar
  11. 11.
    Pan, D., Liu, L.-M., Slater, B., et al., ACS Nano, 2011, vol. 5, p. 4562.CrossRefGoogle Scholar
  12. 12.
    Johnston, J.C. and Molinero, V., J. Am. Chem. Soc., 2012, vol. 134, p. 6650.CrossRefGoogle Scholar
  13. 13.
    English, N.J., J. Chem. Phys., 2014, vol. 141, p. 234501.CrossRefGoogle Scholar
  14. 14.
    Vitek, A. and Kalus, R., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 10532.CrossRefGoogle Scholar
  15. 15.
    Shevkunov, S.V., Colloid J., 2003, vol. 65, p. 248.CrossRefGoogle Scholar
  16. 16.
    Burnham, C.J., Petersen, M.K., Day, T.J.F., et al., J. Chem. Phys., 2006, vol. 124, p. 024327.CrossRefGoogle Scholar
  17. 17.
    Douady, J., Calvo, F., and Spiegelman, F., Eur. Phys. J. D, 2009, vol. 52, p. 47.CrossRefGoogle Scholar
  18. 18.
    Holden, G.L. and Freeman, D.L., J. Phys. Chem. B, 2011, vol. 115, p. 4725.CrossRefGoogle Scholar
  19. 19.
    Lin, W. and Paesani, F., J. Phys. Chem. A, 2013, vol. 117, p. 7131.CrossRefGoogle Scholar
  20. 20.
    Korchagina, K., Simon, A., Rapacioli, M., et al., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 27288.CrossRefGoogle Scholar
  21. 21.
    Egorov, A.V., Brodskaya, E.N., and Laaksonen, A., J. Chem. Phys., 2003, vol. 118, p. 6380.CrossRefGoogle Scholar
  22. 22.
    Egorov, A.V., Brodskaya, E.N., Lyubartsev, A.P., and Laaksonen, A., J. Chem. Phys., 2003, vol. 119, p. 10237.CrossRefGoogle Scholar
  23. 23.
    Egorov, A.V., Brodskaya, E.N., and Laaksonen, A., Comput. Mat. Sci., 2006, vol. 36, p. 166.CrossRefGoogle Scholar
  24. 24.
    Jungwirth, P. and Tobias, D.J., Chem. Rev., 2006, vol. 106, p. 1259.CrossRefGoogle Scholar
  25. 25.
    Chang, T.-M. and Dang, L.X., Chem. Rev., 2006, vol. 106, p. 1305.CrossRefGoogle Scholar
  26. 26.
    Gonzalez, B.S., Hernandez-Rojas, J., and Wales, D.J., Chem. Phys. Lett., 2005, vol. 412, p. 23.CrossRefGoogle Scholar
  27. 27.
    Nose, S., Mol. Phys., 1984, vol. 52, p. 255.CrossRefGoogle Scholar
  28. 28.
    Hoover, W., Phys. Rev. A, 1985, vol. 31, p. 1695.CrossRefGoogle Scholar
  29. 29.
    Allen, M.P. and Tildesley, D.J., Computer Simulations of Liquids, Oxford: Clarendon, 1987.Google Scholar
  30. 30.
    Egorov, A.V., Brodskaya, E.N., and Laaksonen, A., Mol. Phys., 2002, vol. 100, p. 941.CrossRefGoogle Scholar
  31. 31.
    Jungwirth, P. and Tobias, D.J., J. Phys. Chem. B, 2002, vol. 106, p. 6361.CrossRefGoogle Scholar
  32. 32.
    Warren, G.L. and Patel, S., J. Phys. Chem. C, 2008, vol. 112, p. 7455.CrossRefGoogle Scholar
  33. 33.
    Warren, G.L. and Patel, S., J. Phys. Chem. B, 2008, vol. 112, p. 11679.CrossRefGoogle Scholar
  34. 34.
    Bauer, B.A. and Patel, S., J. Chem. Phys., 2010, vol. 132, p. 024713.CrossRefGoogle Scholar
  35. 35.
    Herce, D.H., Perera, L., Darden, T.A., and Sagui, C., J. Chem. Phys., 2005, vol. 122, p. 024513.CrossRefGoogle Scholar
  36. 36.
    Yoo, S., Lei, Y.A., and Zeng, X.C., J. Chem. Phys., 2003, vol. 119, p. 6083.CrossRefGoogle Scholar
  37. 37.
    Hagberg, D., Brdarski, S., and Karlstrom, G., J. Phys. Chem. B, 2005, vol. 109, p. 4111.CrossRefGoogle Scholar
  38. 38.
    Eggimann, B.L. and Siepmann, J.I., J. Phys. Chem. C, 2008, vol. 112, p. 210.CrossRefGoogle Scholar
  39. 39.
    Horinek, D., Herz, A., Vrbka, L., et al., Chem. Phys. Lett., 2009, vol. 479, p. 173.CrossRefGoogle Scholar
  40. 40.
    Horinek, D., Mamatkulov, S.I., and Netz, R.R., J. Chem. Phys., 2009, vol. 130, p. 124507.CrossRefGoogle Scholar
  41. 41.
    Berendsen, H.J.C., Grigera, J.R., and Straatsmaa, T.P., J. Phys. Chem., 1987, vol. 91, p. 6269.CrossRefGoogle Scholar
  42. 42.
    Dang, L.X. and Smith, D.E., J. Chem. Phys., 1995, vol. 102, p. 3483.CrossRefGoogle Scholar
  43. 43.
    Dang, L.X., Chem. Phys. Lett., 1992, vol. 200, p. 21.CrossRefGoogle Scholar
  44. 44.
    Dang, L.X., J. Am. Chem. Soc., 1995, vol. 117, p. 6954.CrossRefGoogle Scholar
  45. 45.
    Dang, L.X., J. Chem. Phys., 1992, vol. 96, p. 6970.CrossRefGoogle Scholar
  46. 46.
    Buch, V., Bauerecker, S., Devlin, J.P., et al., Int. Rev. Phys. Chem., 2004, vol. 23, p. 375.CrossRefGoogle Scholar
  47. 47.
    Kuhs, W.F., Genov, G., Staykova, D.K., and Hansen, T., Phys. Chem. Chem. Phys., 2004, vol. 4, p. 4917.CrossRefGoogle Scholar
  48. 48.
    Thürmer, K. and Nie, S., PNAS, 2013, vol. 110, p. 11757.CrossRefGoogle Scholar
  49. 49.
    Hudait, A. and Molinero, V., J. Am. Chem. Soc., 2016, vol. 138, p. 8958.CrossRefGoogle Scholar
  50. 50.
    Amaya, A.J., Pathak, H., Modak, V.P., et al., J. Phys. Chem. Lett., 2017, vol. 8, p. 3216.CrossRefGoogle Scholar
  51. 51.
    Honjo, G. and Shimaoka, K., Acta Crystallogr., 1957, vol. 10, p. 710.CrossRefGoogle Scholar
  52. 52.
    Vega, C., Sanz, E., and Abascal, J.L.F., J. Chem. Phys., 2005, vol. 122, p. 114507.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Egorov
    • 1
  • E. N. Brodskaya
    • 1
  • A. Laaksonen
    • 2
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department of Chemistry-Ångström LaboratoryUppsala UniversityUppsalaSweden
  3. 3.Department of Materials and Environmental ChemistryArrhenius Laboratory Stockholm UniversityStockholmSweden

Personalised recommendations