Advertisement

Colloid Journal

, Volume 80, Issue 3, pp 298–305 | Cite as

On the Problem of the Relationship between the Contact Angle and Surface Roughness Coefficient: Quartz Wettability with Melted Germanium

  • V. M. Samsonov
  • I. A. Kaplunov
  • A. M. Ivanov
  • I. V. Talyzin
  • S. A. Tretyakov
Article
  • 11 Downloads

Abstract

Equilibrium contact angles of melted geranium have been measured at fused quartz surfaces. The surfaces were preliminarily grinded, polished, and, in some cases, etched. Then, the roughness coefficients are determined for the relief profile and the surface itself by optical interferometry using a NanoMap 1000 WLI profilometer. The contact angle has been found to vary in a range of 147°–164° depending on the method of surface pretreatment. The measured values of the contact angles agree with the data of other researchers. At the same time, the analysis of the obtained data has led to the conclusion that Wenzel’s equation, which relates the contact angles at smooth and rough surfaces, is not valid for germanium droplets on quartz surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wenzel, R.N., Ind. Eng. Chem. 1936, vol. 28, p. 988.CrossRefGoogle Scholar
  2. 2.
    Derjaguin, B.V., Dokl. Akad. Nauk SSSR 1946, vol. 51, p. 357.Google Scholar
  3. 3.
    Summ, B.D. and Goryunov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physicochemical Fundamentals of Wetting and Spreading), Moscow: Khimiya 1976.Google Scholar
  4. 4.
    Bykhovskii, A.I., Rastekanie (Spreading), Kiev: Naukova Dumka, 1983.Google Scholar
  5. 5.
    Samsonov, M.V. and Samsonov, V.M., in Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov (Physicochemical Aspects of Cluster, Nanostructure and Nanomaterial Investigation), Tver: Tversk. Gos. Univ. 2015, no. 7, p. 425.Google Scholar
  6. 6.
    Rusanov, A.I., Kolloidn. Zh. 1977, vol. 39, p. 711.Google Scholar
  7. 7.
    Rusanov, A.I., Colloid J. 1998, vol. 60, p. 748.Google Scholar
  8. 8.
    Rusanov, A.I., Mendeleev Commun., 1996, p. 30.Google Scholar
  9. 9.
    Adamson, A., The Physical Chemistry of Surfaces, New York: Wiley, 1976.Google Scholar
  10. 10.
    Patankar, N.A., Langmuir 2004, vol. 20, p. 7097.CrossRefGoogle Scholar
  11. 11.
    Smirnov, A.A., Kaplunov, I.A., Ol’nev, A.A., and Nikiforova, A.N., in Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov (Physicochemical Aspects of Cluster, Nanostructure and Nanomaterial Investigation), Tver: Tversk. Gos. Univ. 2017, no. 9, p. 465.Google Scholar
  12. 12.
    Summ, B.D. and Samsonov, V.M., Colloids Surf. 1999, vol. 160, p. 63.CrossRefGoogle Scholar
  13. 13.
    Nizhenko, V.I., Metody issledovaniya i svoistva granits razdela kontaktiruyushchikh faz (Methods of Investigation and Properties of Contacting Phases Interfaces), Kiev: Naukova Dumka, 1977.Google Scholar
  14. 14.
    Fizicheskie velichiny. Spravochnik (Physical Quantities: A Handbook), Moscow: Energoatomizdat, 1991.Google Scholar
  15. 15.
    Stalder, A.F., Kulik, G., Sage, D., Barbieri, L., and Hoffmann, P.A., Colloids Surf. A 2006, vol. 286, p. 92.CrossRefGoogle Scholar
  16. 16.
    Tamai, Y. and Aratani, K., J. Phys. Chem., 1972, vol. 76, p. 3267.CrossRefGoogle Scholar
  17. 17.
    Samsonov, V.M., Shcherbakov, L.M., Novoselov, A.R., and Lebedev, A.V., Colloids Surf. A 1999, vol. 160, p. 117.CrossRefGoogle Scholar
  18. 18.
    Gordon, A. and Ford, R., The Chemist’s Companion. A Handbook of Practical Data. Techniques and References, New York: Wiley, 1972.Google Scholar
  19. 19.
    Kaiser, N., Cröll, A., Szofran, F.R., Cobb, S.D., and Benz, K.W., J. Cryst. Growth, 2001, vol. 231, p. 448.CrossRefGoogle Scholar
  20. 20.
    Cröll, A., Salk, N., Szofran, F.R., Cobb, S.D., and Volz, M.P., J. Cryst. Growth, 2002, vol. 242, p. 45.CrossRefGoogle Scholar
  21. 21.
    Podkopaev, O.I., Shimanskii, A.F., Kulakovskaya, T.V., Gorodishcheva, A.N., and Golubovskaya, N.O., Inorg. Mater. 2016, vol. 52, p. 1091.CrossRefGoogle Scholar
  22. 22.
    Shimanskii, A.F., Podkopaev, O.I., Losev, V.N., Kulakovskaya, T.V., and Simonova, N.S., Rasplavy 2013, no. 6, p. 29.Google Scholar
  23. 23.
    Podkopaev, O.I., Shimanskii, A.F., and Molotkovskaya, N.O., Sovrem. Probl. Nauki Obrazov. 2012, no. 6, p. 12.Google Scholar
  24. 24.
    Kostikov, V.I. and Belov, G.V., Gidrodinamika poristykh grafitov (The Hydrodynamics of Porous Graphites), Moscow: Metallurgiya, 1988.Google Scholar
  25. 25.
    Samsonov, V.M., Bembel, A.G., Popov, I.V., Vasilyev, S.A., and Talyzin, I.V., Surf. Innov. 2017, vol. 5, p. 161.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Samsonov
    • 1
  • I. A. Kaplunov
    • 1
  • A. M. Ivanov
    • 1
  • I. V. Talyzin
    • 1
  • S. A. Tretyakov
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations