Colloid Journal

, Volume 80, Issue 2, pp 207–213 | Cite as

Mathematical Simulation of Gas Transfer through a Bilayer Membrane with Account for Adsorption Kinetics

Article
  • 7 Downloads

Abstract

Mathematical simulation has been employed to study the permeability of a bilayer membrane taking into account finite rates of adsorption on the external surfaces of the membrane and internal diffusion in it. Analytical expressions are derived for transmembrane gas flux and permeability of the membrane. It has been revealed that the permeability may depend on the direction of gas flux (asymmetry effect). It has been shown that the asymmetry effect arises at different values of the parameters of the isotherms of gas sorption in membrane layers at a finite gas pressure. The main characteristics that govern the degree of asymmetry have been determined and analyzed. The rate of adsorption has been found to substantially influence the magnitude of the asymmetry effect in the bilayer membrane. It has been found that a two-layer membrane can function as a diffusion "diode", if adsorption is the limiting stage of gas transfer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Firpo, G., Angeli, E., Repetto, L., and Valbusa, U., J. Membr. Sci., 2015, vol. 481, p. 1.CrossRefGoogle Scholar
  2. 2.
    Mensitieri, G., Del Nobiel, M.A., Monetta, T., Nicodemo, L., and Belucci, F., J. Membr. Sci., 1994, vol. 89, p. 131.CrossRefGoogle Scholar
  3. 3.
    McCaig, M.S. and Paul, D.R., Polymer, 2000, vol. 41, p. 629.CrossRefGoogle Scholar
  4. 4.
    Islam, M.A. and Buchart, H., Indian J. Chem. Technol., 2005, vol. 12, p. 88.Google Scholar
  5. 5.
    Islam, M.A., Buchart, H., and Paul, D., J. Membr. Sci., 2002, vol. 204, p. 379.CrossRefGoogle Scholar
  6. 6.
    Islam, M.A. and Buchart, H., Chem. Eng. Sci., 2002, vol. 57, p. 2089.CrossRefGoogle Scholar
  7. 7.
    Ugrozov, V.V. and Filippov, A.N., Colloid J., 2012, vol. 74, p. 739.CrossRefGoogle Scholar
  8. 8.
    Volkov, A.V., Tsarkov, S.E., Gilman, A.V., Khotimsky, V.S., Roldughin, V.I., and Volkov, V.V., Adv. Colloid Interface Sci., 2015, vol. 222, p. 716.CrossRefGoogle Scholar
  9. 9.
    Volkov, V.V., Mchedlishvili, B.V., Roldughin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.V., Nanotechnol. Russ., 2008, vol. 3, p. 656.CrossRefGoogle Scholar
  10. 10.
    Tsodikov, M.V., Teplyakov, V.V., Magsumov, M.I., Shkol’nikov, E.I., Sidorova, E.V., Volkov, V.V., Kapteijn, F., Gora, L., Trusov, L.I., and Uvarov, V.I., Kinet. Catal., 2006, vol. 47, p. 25.CrossRefGoogle Scholar
  11. 11.
    Teplyakov, V.V., Tsodikov, M.V., Magsumov, M.I., and Kapteijn, F., Kinet. Catal., 2007, vol. 48, p. 132.CrossRefGoogle Scholar
  12. 12.
    Roldughin, V.I. and Zhdanov, V.M., Adv. Colloid Interface Sci., 2011, vol. 168, p. 223.CrossRefGoogle Scholar
  13. 13.
    Filippov, A.N., Starov, V.M., Kononenko, N.A., and Berezina, N.P., Adv. Colloid Interface Sci., 2008, vol. 139, p. 29.CrossRefGoogle Scholar
  14. 14.
    Zhdanov, V.M., Roldughin, V.I., and Sherysheva, E.E., Inzh.-Fiz. Zh., 2013, vol. 86, p. 338.Google Scholar
  15. 15.
    Ugrozov, V.V., Colloid J., 2016, vol. 78, p. 115.CrossRefGoogle Scholar
  16. 16.
    Ugrozov, V.V., Colloid J., 2017, vol. 79, p. 549.CrossRefGoogle Scholar
  17. 17.
    Figoli, A., http://www.imc.cas.cz/sympo/emsss/lectsabs.pdf.Google Scholar
  18. 18.
    Peter, J. and Peinemann, K.-V., J. Membr. Sci., 2009, vol. 340, p. 62.CrossRefGoogle Scholar
  19. 19.
    Li, P., Wang, Z., Li, W., Liu, Y., Wang, J., and Wang, S., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 15481.CrossRefGoogle Scholar
  20. 20.
    Alimov, V.N., Busnyuk, A.O., Notkin, M.E., and Livshits, A.I., J. Membr. Sci., 2014, vol. 457, p. 103.CrossRefGoogle Scholar
  21. 21.
    Lu, G.Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H., and Kreutz, T., J. Colloid Interface Sci., 2007, vol. 314, p. 589.CrossRefGoogle Scholar
  22. 22.
    Toni, E., Baschetti, M.G., Lorenzetti, C., Fayet, P., and Sarti, G.C., Surf. Coat. Technol., 2016, vol. 302, p. 65.CrossRefGoogle Scholar
  23. 23.
    Siracusa, V., Int. J. Polym. Sci., 2012, vol. 2012, p. 1.CrossRefGoogle Scholar
  24. 24.
    Dai, Z., Ansaloni, L., and Deng, L., Green Energy Environ., 2016, vol. 1, p. 102.CrossRefGoogle Scholar
  25. 25.
    Struller, C.F., Kelly, P.J., and Copeland, N.J., Surf. Coat. Technol., 2014, vol. 241, p. 130.CrossRefGoogle Scholar
  26. 26.
    Landau, L.A. and Lifshits, E.M., Statistical Physics, New York: Pergamon, 1980.Google Scholar
  27. 27.
    Shulepov, V.Yu. and Aksenenko, E.V., Reshetochnyi gaz. Vvedenie v teoriyu i izbrannye prilozheniya (Lattice Gas. An Introduction to Theory and Selected Problems), Kiev: Naukova Dumka, 1981.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Financial University under the Government of the Russian FederationMoscowRussia

Personalised recommendations