Colloid Journal

, Volume 79, Issue 6, pp 715–734 | Cite as

The role of the scale factor in the structure-related mechanical behavior of glassy polymers

  • O. V. Arzhakova
  • A. A. Dolgova
  • P. A. Kechek’yan
  • E. G. Rukhlya
  • A. S. Kechek’yan
  • A. L. VolynskiiEmail author


Literature data on the effect of the scale factor on the structure and properties of polymers have been analyzed. Two modes of the scale factor have been revealed. The first mode is related to the sizes of a polymer phase. This factor manifests itself when the polymer phase sizes become comparable with the sizes of a macromolecular coil. The second mode is directly associated with the sizes of a polymer sample and becomes detectable when investigating bulky polymer samples. The scale factor has been shown to substantially affect the structure-related mechanical behavior of loaded polymers, in particular, the stress–strain curves characterizing glassy polymers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartenev, G.M. and Frenkel’, S.Ya., Fizika polimerov (Polymer Physics), Leningrad: Khimiya, 1990.Google Scholar
  2. 2.
    Kuleznev, V.N. and Shershnev, V.A., Khimiya i fizika polimerov (Polymer Chemistry and Physics), Moscow: KolosS, 2007.Google Scholar
  3. 3.
    Ward, I.M. and Sweeney, J., An Introduction to the Mechanical Properties of Solid Polymers, Chichester: Wiley, 2004.Google Scholar
  4. 4.
    Perez, J., Physics and Mechanics of Amorphous Polymers, Rotterdam: A.A. Balkema, 1998.Google Scholar
  5. 5.
    Bartenev, G.M. and Zelenev, Yu.V., in Entsiklopediya polimerov (Encyclopedia of Polymers), Moscow: Sovetskaya Entsiklopediya, 1972, vol.1.Google Scholar
  6. 6.
    Argon, A.S., The Physics of Deformation and Fracture of Polymers, Cambridge: Cambridge Univ. Press, 2013.CrossRefGoogle Scholar
  7. 7.
    Keddie, J.L., Jones, R.A.L., and Cory, R.A., Europhys. Lett., 1994, vol. 27, p. 59.CrossRefGoogle Scholar
  8. 8.
    Terekhin, V.V., Zaitseva, A.V., Dement’eva, O.V., and Rudoy, V.M., Colloid J., 2013, vol. 75, p. 720.CrossRefGoogle Scholar
  9. 9.
    Rudoy, V.M., Dement’eva, O.V., Yaminskii, I.V., Sukhov, V.M., Kartseva, M.E., and Ogarev, V.A., Colloid J., 2002, vol. 64, p. 746.CrossRefGoogle Scholar
  10. 10.
    Dement’eva, O.V., Zaitseva, A.V., Kartseva, M.E., Ogarev, V.A., and Rudoy, V.M., Colloid J., 2007, vol. 69, p. 278.CrossRefGoogle Scholar
  11. 11.
    Forrest, J.A. and Dalnoki-Veress, K., Adv. Colloid Interface Sci., 2001, vol. 94, p. 167.CrossRefGoogle Scholar
  12. 12.
    Huang, R., Stafford, C., and Vogt, B., J. Aerospace Eng., 2007, vol. 20, p. 38.CrossRefGoogle Scholar
  13. 13.
    Wang, H., Chang, T., Li, X., Zhang, W., Hu, Z., and Jonas, A.M., Nanoscale, 2016, vol. 8, no. 32, p. 14950.CrossRefGoogle Scholar
  14. 14.
    Mundra, M.K., Donthu, S.K., Dravid, V.P., and Torkelson, J.M., Nano Lett., 2007, vol. 7, p. 713.CrossRefGoogle Scholar
  15. 15.
    Venkatesan, S. and Basu, S., J. Mech. Phys. Solids, 2015, vol. 77, p. 123.CrossRefGoogle Scholar
  16. 16.
    Li, J.C.M., Polym. Eng. Sci., 1984, vol. 24, p. 750.CrossRefGoogle Scholar
  17. 17.
    Donald, A.M., in The Physics of Glassy Polymers, Haward, R.N. and Young, R.J., Eds., Dordrecht: Springer Netherlands, 1997.Google Scholar
  18. 18.
    Narisawa, I., Prochnost’ polimernykh materialov (Strength of Polymer Materials), Tovmasyan, Yu.M., Ed., Moscow: Khimiya, 1987.Google Scholar
  19. 19.
    Kramer, E.J., J. Macromol. Sci., Part B, 1974, vol. 10, p. 191.CrossRefGoogle Scholar
  20. 20.
    Kramer, E.J., Adv. Polym. Sci., 1983, vols. 52–53, p. 1.Google Scholar
  21. 21.
    Friedrich, K., Adv. Polym. Sci., 1983, vols. 52–53, p. 225.CrossRefGoogle Scholar
  22. 22.
    Kramer, E.J. and Berger, L.L., Adv. Polym. Sci., 1990, vols. 91–92, p. 1.Google Scholar
  23. 23.
    Kambour, R.P., J. Polym. Sci., Macromol. Rev., 1973, vol. 7, p. 1.CrossRefGoogle Scholar
  24. 24.
    Volynskii, A.L. and Bakeev, N.F., Solvent Crazing of Polymers, New York: Elsevier, 1995.Google Scholar
  25. 25.
    Narisawa, I. and Jee, A.F., in Material Science and Technology. Vol. 12. Structure and Properties of Polymers, Thomas, E.L., Ed., Weinheim: Wiley-VCH, 1993, p. 701.Google Scholar
  26. 26.
    Grellmann, W. and Seidler, S., Deformation and Fracture Behavior of Polymers, Berlin: Springer, 2001.CrossRefGoogle Scholar
  27. 27.
    Yoshida, S., Deformation and Fracture of Solid-State Materials: Field Theoretical Approach and Engineering Applications, New York: Springer, 2015.CrossRefGoogle Scholar
  28. 28.
    Passaglia, E., J. Phys. Chem. Solids, 1987, vol. 48, p. 1075.CrossRefGoogle Scholar
  29. 29.
    Basu, S., Mahajan, D.K., and Van der Giessen, E., Polymer, 2005, vol. 46, p. 7504.CrossRefGoogle Scholar
  30. 30.
    Starke, J.U., Schulze, G., and Michler, G.H., Acta Polym., 1997, vol. 48, p. 92.CrossRefGoogle Scholar
  31. 31.
    Michler, G.H., in Deformation and Fracture Behaviour of Polymers, Grellmann, W. and Seidler, S., Eds., Berlin: Springer, 2001, p. 193.Google Scholar
  32. 32.
    Kambour, R.P. and Kopp, R.W., J. Polym. Sci., Part A, 1969, vo, 7, p. 183.CrossRefGoogle Scholar
  33. 33.
    Volynskii, A.L. and Bakeev, N.F., Strukturnaya samoorganizatsiya amorfnykh polimerov (Structural Self-Assembly of Amorphous Polymers), Moscow: Fizmatlit, 2005.Google Scholar
  34. 34.
    Yarysheva, L.M., Rukhlya, E.G., Yarysheva, A.Yu., Volynskii, A.L., and Bakeev, N.F., Obzorn. Zh. Khim., 2012, vol. 2, p. 3.Google Scholar
  35. 35.
    Bowden, P.B. and Raha, S., Philos. Mag., 1970, vol. 22, p. 463.CrossRefGoogle Scholar
  36. 36.
    Kinloch, A.J. and Young, R.J., Fracture Behaviour of Polymers, Netherlands: Springer, 2013.Google Scholar
  37. 37.
    Arinstein, A. and Zussman, E., J. Polym. Sci., Part B: Polym. Phys., 2011, vol. 49, p. 691.CrossRefGoogle Scholar
  38. 38.
    Mohammadzadehmoghadam, S., Dong, Y., and Jeffery Davies, I., J. Polym. Sci., Part B: Polym. Phys., 2015, vol. 53, p. 1171.CrossRefGoogle Scholar
  39. 39.
    Sirc, J., Hobzova, R., Kostina, N., Munzarova, M., Juklickova, M., Lhotka, M., Kubinova, S., Zajicova, A., and Michalek, J., Scholar
  40. 40.
    Gupta, P., Elkins, C., Long, T.E., and Wilkes, G.L., Polymer, 2005, vol. 46, p. 4799.CrossRefGoogle Scholar
  41. 41.
    Kolbuk, D., Sajkiewicz, P., and Kowalewski, T.A., Eur. Polym. J., 2012, vol. 48, p. 275.CrossRefGoogle Scholar
  42. 42.
    Stephens, J.S., Frisk, S., Megelski, S., Rabolt, J.F., and Chase, D.B., Appl. Spectrosc., 2001, vol. 55, p. 1287.CrossRefGoogle Scholar
  43. 43.
    Hohman, M.M., Shin, M., Rutledge, G., and Brenner, M.P., Phys. Fluids, 2001, vol. 13, p. 2201.CrossRefGoogle Scholar
  44. 44.
    Shin, Y.M., Hohman, M.M., Brenner, M.P., and Rutledge, G.C., Polymer, 2001, vol. 42, p. 09955.CrossRefGoogle Scholar
  45. 45.
    Reneker, D.H., Yarin, A.L., Fong, H., and Koombhongse, S., J. Appl. Phys., 2000, vol. 87, p. 4531.CrossRefGoogle Scholar
  46. 46.
    Megelski, S., Stephens, J.S., Chase, D.B., and Rabolt, J.F., Macromolecules, 2002, vol. 35, p. 8456.CrossRefGoogle Scholar
  47. 47.
    Dayal, P., Liu, J., Kumar, S., and Kyu, T., Macromolecules, 2007, vol. 40, no. 21, p. 7689.CrossRefGoogle Scholar
  48. 48.
    Koombhongse, S., Liu, W., and Reneker, D.H., J. Polym. Sci., Part B: Polym. Phys., 2001, vol. 39, p. 2598.CrossRefGoogle Scholar
  49. 49.
    Casper, C.L., Stephens, J.S., Tassi, N.G., Chase, D.B., and Rabolt, J.F., Macromolecules, 2004, vol. 37, p. 573.CrossRefGoogle Scholar
  50. 50.
    Reneker, D.H., Yarin, A.L., Zussman, E., and Xu, H., Adv. Appl. Mech. 2007, vol. 41, p. 43.CrossRefGoogle Scholar
  51. 51.
    Thavasi, V., Singh, G., and Ramakrishna, S., Energy Environ. Sci., 2008, vol. 1, p. 205.CrossRefGoogle Scholar
  52. 52.
    Wu, H., Zhang, R., Sun, Y., Lin, D., Sun, Z., Pan, W., and Downs, P., Soft Matter, 2008, vol. 4, p. 2429.CrossRefGoogle Scholar
  53. 53.
    Baker, S.C., Atkin, N., Gunning, P.A., Granville, N., Wilson, K., Wilson, D., and Southgate, J., Biomaterials, 2006, vol. 27, p. 3136.CrossRefGoogle Scholar
  54. 54.
    Maretschek, S., Greiner, A., and Kissel, T., J. Control. Release, 2008, vol. 127, p. 180.CrossRefGoogle Scholar
  55. 55.
    Ra, E.J., An, K.H., Kim, K.K., Jeong, S.Y., and Lee, Y.H., Chem. Phys. Lett., 2005, vol. 413, p. 188.CrossRefGoogle Scholar
  56. 56.
    Greiner, A. and Wendorff, J.H., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 5670.CrossRefGoogle Scholar
  57. 57.
    Chang, C.-C., Huang, C.-M., Chang, Y.-H., and Kuo, C., Opt. Express, 2010, vol. 18, no. S2, p. A174.CrossRefGoogle Scholar
  58. 58.
    Cuenot, S., Demoustier-Champagne, S., and Nysten, B., Phys. Rev. Lett., 2000, vol. 85, p. 1690.CrossRefGoogle Scholar
  59. 59.
    Tan, E.P.S., Goh, C.N., Sow, C.H., and Lim, C.T., Appl. Phys. Lett., 2005, vol. 86, p. 073115.CrossRefGoogle Scholar
  60. 60.
    Burman, M., Arinstein, A., and Zussman, E., Appl. Phys. Lett., 2008, vol. 93, p. 193118.CrossRefGoogle Scholar
  61. 61.
    Yuya, P.A., Wen, Y., Turner, J.A., Dzenis, Y.A., and Li, Z., Appl. Phys. Lett., 2007, p. 111909.Google Scholar
  62. 62.
    Shin, M.K., Kim, S.I., Kim, S.J., Kim, S.-K., Lee, H., and Spinks, G.M., Appl. Phys. Lett., 2006, vol. 89, p. 231929.CrossRefGoogle Scholar
  63. 63.
    Arinstein, A., Burman, M., Gendelman, O., and Zussman, E., Nat. Nano, 2007, vol. 2, p. 59.CrossRefGoogle Scholar
  64. 64.
    Liu, Y., Li, C., Chen, S., Wachtel, E., Koga, T., Sokolov, J.C., and Rafailovich, M.H., J. Polym. Sci., Part B: Polym. Phys., 2009, vol. 47, p. 2501.CrossRefGoogle Scholar
  65. 65.
    Wei, W. and Asa, H.B., Nanotechnology, 2010, vol. 21, p. 225701.CrossRefGoogle Scholar
  66. 66.
    Hwang, K.Y., Kim, S.-D., Kim, Y.-W., and Yu, W.-R., Polym. Test., 2010, vol. 29, p. 375.CrossRefGoogle Scholar
  67. 67.
    Ji, Y., Li, B., Ge, S., Sokolov, J.C., and Rafailovich, M.H., Langmuir, 2006, vol. 22, p. 1321.CrossRefGoogle Scholar
  68. 68.
    Treloar, L.R.G., The Physics of Rubber Elasticity, New York: Clarendon, 2005.Google Scholar
  69. 69.
    Volynskii, A.L. and Bakeev, N.F., Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers, New York: Taylor & Francis, 2016.Google Scholar
  70. 70.
    Volynskii, A.L. and Bakeev, N.F., Polym. Sci., Ser. A, 2009, vol. 51, p. 1096.CrossRefGoogle Scholar
  71. 71.
    Volynskii, A.L., Yarysheva, L.M., and Bakeev, N.F., Polym. Sci., Ser. A, 2011, vol. 53, p. 871.CrossRefGoogle Scholar
  72. 72.
    Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941.Google Scholar
  73. 73.
    Lazurkin, Yu.S. and Fogel’son, R.L., Zh. Tekh. Fiz., 1951, vol. 21, p. 267.Google Scholar
  74. 74.
    Yarysheva, L.M., Pazukhina, L.Yu., Kabanov, N.M., Lukovkin, G.M., Volynskii, A.L., Bakeev, N.F., and Kozlov, P.V., Vysokomol. Soedin., Ser. A, 1984, vol. 26, p. 388.Google Scholar
  75. 75.
    Lazurkin, Yu.S., Doctoral (Phys.-Math.) Dissertation, Moscow: Inst. of Physical Problems, USSR Acad. Sci., 1954.Google Scholar
  76. 76.
    Bakeev, N.P., Lukovkin, G.M., Marcus, I., Mikouchev, A.E., Shitov, A.N., Vanissum, E.B., and Volynskii, A.L., US Patent 5516473, 1996.Google Scholar
  77. 77.
    Kolluru, P.V. and Chasiotis, I., Polymer, 2015, vol. 56, p. 507.CrossRefGoogle Scholar
  78. 78.
    Volynskii, A.L., Yarysheva, L.M., and Bakeev, N.F., Polym. Sci., Ser. A, 2011, vol. 53, p. 871.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. V. Arzhakova
    • 1
  • A. A. Dolgova
    • 1
  • P. A. Kechek’yan
    • 1
  • E. G. Rukhlya
    • 1
  • A. S. Kechek’yan
    • 2
  • A. L. Volynskii
    • 1
    Email author
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations