Colloid Journal

, Volume 78, Issue 4, pp 515–524 | Cite as

Specific features of polyol synthesis of silver nanoparticles with the use of solid carboxylates as precursors

  • A. I. TitkovEmail author
  • E. Yu. Gerasimov
  • M. V. Shashkov
  • O. A. Logutenko
  • N. V. Bulina
  • Yu. M. Yukhin
  • N. Z. Lyakhov


Electron microscopy, X-ray diffraction, and chromatography-mass spectrometry have been employed to investigate the reduction of solid silver caprylate in ethylene glycol with the formation of silver nanoparticles. The structural characteristics of silver nanoparticles have been studied as depending on the conditions of their synthesis, including temperature, reduction time, and silver salt concentration. It has been found that, in the studied range of parameters under the conditions, when solid silver caprylate is dispersed in ethylene glycol, the characteristics of resulting nanoparticles are almost independent of the synthesis temperature. This peculiarity is related to the fact that the formation and growth of nanoparticles occur on the surface of silver salt crystals and are accompanied by gradual dissolution thereof. In this system, ethylene glycol plays the roles of a reductant and a solvent for liquid reaction products.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trimm, D.L. and Onsan, Z.I., Catal. Rev., 2001, vol. 43, p. 31.CrossRefGoogle Scholar
  2. 2.
    Skrabalak, S.E., Chen, J., Au, L., Lu, X., Li, X., and Xia, Y., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2007, vol. 19, p. 3177.CrossRefGoogle Scholar
  3. 3.
    Khlebtsov, N.G. and Dykman, L.A., J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 111, p. 1.CrossRefGoogle Scholar
  4. 4.
    Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D., and Xia, Y., Chem. Rev., 2011, vol. 111, p. 3669.CrossRefGoogle Scholar
  5. 5.
    Krutyakov, Yu.A., Kudrinskii, A.A., Olenin, A.Yu., and Lisichkin, G.V., Usp. Khim., 2008, vol. 77, p. 242.CrossRefGoogle Scholar
  6. 6.
    Shenashen, M.A., El-Safty, S.A., and Elshehy, E.A., Part. Part. Syst. Charact., 2014, vol. 31, p. 293.CrossRefGoogle Scholar
  7. 7.
    Sharma, V.K., Yngard, R.A., and Lin, Y., Adv. Colloid Interface Sci., 2009, vol. 145, p. 83.CrossRefGoogle Scholar
  8. 8.
    Sun, Y. and Xia, Y., Science (Washington, D.C.), 2002, vol. 298, p. 2176.CrossRefGoogle Scholar
  9. 9.
    Wiley, B., Sun, Y., and Xia, Y., Acc. Chem. Res., 2007, vol. 40, p. 1067.CrossRefGoogle Scholar
  10. 10.
    Xiong, Y., Washio, I., Chen, J., Cai, H., Li, Z.-Y., and Xia, Y., Langmuir, 2006, vol. 22, p. 8563.CrossRefGoogle Scholar
  11. 11.
    Silvert, P.-Y., Herrera-Urbina, R., Duvauchelle, N., Vijayakrishnan, V., and Tekaia-Elhsissen, K., J. Mater. Chem., 1996, vol. 6, p. 573.CrossRefGoogle Scholar
  12. 12.
    Kamyshny, A., Steinke, J., and Magdassi, S., OAPJ, 2011, vol. 4, p. 19.Google Scholar
  13. 13.
    Shim, I.-K., Lee, Y.I., Lee, K.J., and Joung, J., Mater. Chem. Phys., 2008, vol. 110, p. 316.CrossRefGoogle Scholar
  14. 14.
    Lee, K.J., Jun, B.H., Kim, T.H., and Joung, J., Nanotechnology, 2006, vol. 17, p. 2424.CrossRefGoogle Scholar
  15. 15.
    Ankireddy, K., Vunnam, S., Kellar, J., and Cross, W., J. Mater. Chem. C, 2013, vol. 1, p. 572.CrossRefGoogle Scholar
  16. 16.
    Lee, J.J., Park, J.C., Kim, M.H., Chang, T.S., Kim, S.T., Koo, S.M., You, N.C., and Lee, S.J., J. Ceram. Process. Res., 2007, vol. 8, p. 219.Google Scholar
  17. 17.
    Abe, K., Hanada, T., Yoshida, Y., Tanigaki, N., Takiguchi, H., Nagasawa, H., Nakamoto, M., Yamaguchi, T., and Yase, K., Thin Solid Films, 1998, vols. 327–329, p. 524.CrossRefGoogle Scholar
  18. 18.
    Yamamoto, M. and Nakamoto, M., J. Mater. Chem., 2003, vol. 13, p. 2064.CrossRefGoogle Scholar
  19. 19.
    Yamamoto, M., Kashiwagi, Y., and Nakamoto, M., Langmuir, 2006, vol. 22, p. 8581.CrossRefGoogle Scholar
  20. 20.
    Rao, C.R.K. and Trivedi, D.C., Mater. Chem. Phys., 2006, vol. 99, p. 354.CrossRefGoogle Scholar
  21. 21.
    Lee, K.J., Lee, Y.I., Shim, I.K., Joung, J., and Oh, Y.S., J. Colloid Interface Sci., 2006, vol. 304, p. 92.CrossRefGoogle Scholar
  22. 22.
    Wang, W., Chen, X., and Efrima, S., J. Phys. Chem. B, 1999, vol. 103, p. 7238.CrossRefGoogle Scholar
  23. 23.
    Yukhin, Yu.M., Titkov, A.I., Kulmukhamedov, G.K., and Lyakhov, N.Z., Theor. Found. Chem. Eng., 2015, vol. 49, p. 490.CrossRefGoogle Scholar
  24. 24.
    Andreev, V.M., Burleva, L.P., Boldyrev, V.V., and Mikhailov, Yu.I., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1983, vol. 4, no. 2, p. 58.Google Scholar
  25. 25.
    Andreev, V.M., Burleva, L.P., and Boldyrev, V.V., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1983, vol. 5, no. 15, p. 3.Google Scholar
  26. 26.
    Binnemans, K., Van Deun, R., Thijs, B., Vanwelkenhuysen, I., and Geuens, I., Chem. Mater., 2004, vol. 16, p. 2021.CrossRefGoogle Scholar
  27. 27.
    Lee, S.J., Han, S.W., Choi, H.J., and Kim, K., J. Phys. Chem. B, 2002, vol. 106, p. 2892.CrossRefGoogle Scholar
  28. 28.
    Aret, E., Volotchaev, V., Verhaegen, S., Meekes, H., Vlieg, E., Deroover, G., and Van Roost, C., Cryst. Growth Des., 2006, vol. 6, p. 1027.CrossRefGoogle Scholar
  29. 29.
    Bokhonov, B.B., Sharafutdinov, M.R., Whitcomb, D.R., and Burleva, L.P., J. Phys. Chem. C, 2014, vol. 118, p. 11980.CrossRefGoogle Scholar
  30. 30.
    Bokhonov, B.B., Burleva, L.P., Whitcomb, D.R., and Usanov, Yu.E., J. Imaging Sci. Technol., 2001, vol. 45, p. 259.Google Scholar
  31. 31.
    Kim, D., Jeong, S., and Moon, J., Nanotechnology, 2006, vol. 17, p. 4019.CrossRefGoogle Scholar
  32. 32.
    Zhao, T., Sun, R., Yu, S., Zhang, Z., Zhou, L., Huang, H., and Du, R., Colloids Surf. A, 2010, vol. 366, p. 197.CrossRefGoogle Scholar
  33. 33.
    Skrabalak, S.E., Wiley, B.J., Kim, M., Formo, E.V., and Xia, Y., Nano Lett., 2008, vol. 8, p. 2077.CrossRefGoogle Scholar
  34. 34.
    Marchionni, G. and Tortelli, V., WO Patent 2010003931 A1, 2010.Google Scholar
  35. 35.
    Vodyankina, O.V. and Kurina, L.N., React. Kinet. Catal. Lett., 1998, vol. 64, p. 103.CrossRefGoogle Scholar
  36. 36.
    James, T., The Theory of the Photographic Process, New York Macmillan, 1977.Google Scholar
  37. 37.
    Shapiro, B.I., Teoreticheskie nachala fotograficheskogo protsessa (Theoretical Principles of Photographic Process), Moscow Editorial URSS, 2000.Google Scholar
  38. 38.
    Thanh, N.T.K., Maclean, N., and Mahiddine, S., Chem. Rev., 2014, vol. 114, p. 7610.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. I. Titkov
    • 1
    Email author
  • E. Yu. Gerasimov
    • 1
    • 2
  • M. V. Shashkov
    • 2
  • O. A. Logutenko
    • 1
  • N. V. Bulina
    • 1
  • Yu. M. Yukhin
    • 1
  • N. Z. Lyakhov
    • 1
  1. 1.Institute of Solid-State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations