Advertisement

Colloid Journal

, Volume 77, Issue 5, pp 635–640 | Cite as

Extended fine structure of auger spectra of thermally oxidized silicon surface

  • V. I. TroyanEmail author
  • V. B. Loginov
  • P. V. Borisyuk
  • O. S. Vasil’ev
Article
  • 31 Downloads

Abstract

The data are presented on the evolution of the shape and position of the L 23 VV Auger line for the surface of single-crystal silicon Si(111) during its thermal oxidation. The fine structure of the high-energy region of the Auger spectrum is found to be related to the loss of energy by Auger electrons for plasmon excitation and electronic interband transitions, while the low-energy region may be associated with the effect of extension fine Auger structure (EXFAS). By the example of Si atoms in a thin surface layer of SiO2, it is shown that, similarly to studying the ordinary oscillations of the EXAFS absorption spectra, the EXFAS technique can be used to solve the problems of the restoration of the local environment of atoms. The interatomic distances calculated using the Fourier transform of the right-hand sides of the Auger spectra (EXFAS spectra) for the pure and oxidized silicon surfaces appear to be 2.2 and 1.7 Å, respectively, thereby coinciding with the published values within determination error.

Keywords

Auger Silicon Surface Auger Electron Colloid Journal Auger Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Razouk, R.R. and Deal, B.E., J. Electrochem. Soc., 1979, vol. 126, p. 1573.CrossRefGoogle Scholar
  2. 2.
    Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Phys. Rev. B: Condens. Matter, 1998, vol. 58, p. 7565.CrossRefGoogle Scholar
  3. 3.
    Bearden, J.A. and Burr, A.F., Rev. Mod. Phys., 1967, vol. 39, p. L25.Google Scholar
  4. 4.
    Vedrinskii, R.V., Sorosovsk. Obrazovat. Zh., 1996, vol. 5, p. 79.Google Scholar
  5. 5.
    Demuynck, J., Rohmer, M.M., Strich, A., and Veillard, A., J. Chem. Phys., 1981, vol. 75, p. 3443.CrossRefGoogle Scholar
  6. 6.
    De Crescenzi, M., Ultramicroscopy, 1989, vol. 28, p. 65.CrossRefGoogle Scholar
  7. 7.
    Lenahan, P.M. and Dressndorfer, P.V., Appl. Phys. Lett., 1984, vol. 44, p. 96.CrossRefGoogle Scholar
  8. 8.
    Lenahan, P.M. and Dressndorfer, P.V., J. Appl. Phys., 1983, vol. 54, p. 1457.CrossRefGoogle Scholar
  9. 9.
    Shiono, N. and Yashiro, T., Jpn. J. Appl. Phys., 1979, vol. 18, p. 1087.CrossRefGoogle Scholar
  10. 10.
    Krylov, D.G., Ladygin, E.A., and Goryunov, N.N., Fiz. Tekh. Poluprovodn. (Leningrad), 1990, vol. 24, p. 997.Google Scholar
  11. 11.
    Mikawa, R.E. and Lenahan, P.M., IEEE Trans. Nucl. Sci., 1984, vol. 31, p. 1573.CrossRefGoogle Scholar
  12. 12.
    Lenahan, P.M. and Warren, W.L., Appl. Phys. Lett., 1986, vol. 49, p. 1296.CrossRefGoogle Scholar
  13. 13.
    Nishi, Y., Jpn. J. Appl. Phys., 1971, vol. 10, p. 52.CrossRefGoogle Scholar
  14. 14.
    Caplan, P.J., Poindexter, E.H., Deal, B.E., and Razouk, R.R., J. Appl. Phys., 1979, vol. 50, p. 5847.CrossRefGoogle Scholar
  15. 15.
    Caplan, P.J., Poindexter, E.H., and Razouk, R.R., J. Appl. Phys., 1981, vol. 52, p. 879.CrossRefGoogle Scholar
  16. 16.
    Jörgensen, C., Svensson, C., and Ryden, K.-H., J. Appl. Phys., 1984, vol. 56, p. 1093.CrossRefGoogle Scholar
  17. 17.
    Laughlin, R.B., Joannopoulos, J.D., and Chadi, D.J., Phys. Rev. B: Condens. Matter, 1980, vol. 21, p. 5733.CrossRefGoogle Scholar
  18. 18.
    Sakurai, T. and Sugano, T., J. Appl. Phys., 1981, vol. 52, p. 2889.CrossRefGoogle Scholar
  19. 19.
    Dobkin, D.M. and Zuraw, M.K., Principles of Chemical Vapor Deposition, Dordrecht: Kluwer, 2003.CrossRefGoogle Scholar
  20. 20.
    Economou, E.N., The Physics of Solids: Essentials and Beyond, Heidelberg: Springer, 2010.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. I. Troyan
    • 1
    Email author
  • V. B. Loginov
    • 1
  • P. V. Borisyuk
    • 1
  • O. S. Vasil’ev
    • 1
  1. 1.MEPhI National Research Nuclear UniversityMoscowRussia

Personalised recommendations